These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36878361)

  • 1. Mitigation of arsenic release by calcium peroxide (CaO
    Kim HB; Kim JG; Alessi DS; Baek K
    Chemosphere; 2023 May; 324():138321. PubMed ID: 36878361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation.
    Yang YP; Zhang HM; Yuan HY; Duan GL; Jin DC; Zhao FJ; Zhu YG
    Environ Pollut; 2018 May; 236():598-608. PubMed ID: 29433100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of arsenic release from paddy soils using alginate encapsulated calcium peroxide.
    Kim HB; Kim JG; Park J; Baek K
    J Hazard Mater; 2022 Jun; 432():128751. PubMed ID: 35344889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impacts of biochar and silicate fertilizer on arsenic accumulation in rice (Oryza sativa L.).
    Jin W; Wang Z; Sun Y; Wang Y; Bi C; Zhou L; Zheng X
    Ecotoxicol Environ Saf; 2020 Feb; 189():109928. PubMed ID: 31767458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of applying calcium peroxide on the accumulation of arsenic in rice plants grown in arsenic-elevated paddy soils.
    Syu CH; Yu CH; Lee DY
    Environ Pollut; 2020 Nov; 266(Pt 2):115140. PubMed ID: 32653722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of low-dose biochar amendments on arsenic accumulation in rice (Oryza sativa L.).
    Lv D; Wang Z; Sun Y; Jin W; Wang Y; Zhou L; Zheng X
    Environ Sci Pollut Res Int; 2021 Mar; 28(11):13495-13503. PubMed ID: 33185794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photo-induced redox coupling of dissolved organic matter and iron in biochars and soil system: Enhanced mobility of arsenic.
    Kim HB; Kim JG; Choi JH; Kwon EE; Baek K
    Sci Total Environ; 2019 Nov; 689():1037-1043. PubMed ID: 31466144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of biochar and Fe-biochar on Cd and As mobility and transfer in soil-rice system.
    Yin D; Wang X; Peng B; Tan C; Ma LQ
    Chemosphere; 2017 Nov; 186():928-937. PubMed ID: 28830065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic.
    Wang N; Xue XM; Juhasz AL; Chang ZZ; Li HB
    Environ Pollut; 2017 Jan; 220(Pt A):514-522. PubMed ID: 27720546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils.
    Qiao JT; Liu TX; Wang XQ; Li FB; Lv YH; Cui JH; Zeng XD; Yuan YZ; Liu CP
    Chemosphere; 2018 Mar; 195():260-271. PubMed ID: 29272795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of calcium and iron-enriched biochar on arsenic and cadmium accumulation from soil to rice paddy tissues.
    Islam MS; Magid ASIA; Chen Y; Weng L; Ma J; Arafat MY; Khan ZH; Li Y
    Sci Total Environ; 2021 Sep; 785():147163. PubMed ID: 33940407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron-modified phosphorus- and silicon-based biochars exhibited various influences on arsenic, cadmium, and lead accumulation in rice and enzyme activities in a paddy soil.
    Yang X; Wen E; Ge C; El-Naggar A; Yu H; Wang S; Kwon EE; Song H; Shaheen SM; Wang H; Rinklebe J
    J Hazard Mater; 2023 Feb; 443(Pt B):130203. PubMed ID: 36327835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil.
    Lu K; Yang X; Gielen G; Bolan N; Ok YS; Niazi NK; Xu S; Yuan G; Chen X; Zhang X; Liu D; Song Z; Liu X; Wang H
    J Environ Manage; 2017 Jan; 186(Pt 2):285-292. PubMed ID: 27264699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of biochar from peanut shell on speciation and availability of lead and zinc in an acidic paddy soil.
    Chao X; Qian X; Han-Hua Z; Shuai W; Qi-Hong Z; Dao-You H; Yang-Zhu Z
    Ecotoxicol Environ Saf; 2018 Nov; 164():554-561. PubMed ID: 30149354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Goethite modified biochar simultaneously mitigates the arsenic and cadmium accumulation in paddy rice (Oryza sativa) L.
    Irshad MK; Noman A; Wang Y; Yin Y; Chen C; Shang J
    Environ Res; 2022 Apr; 206():112238. PubMed ID: 34688646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study on the potential risk of contaminated-rice straw, its derived biochar and phosphorus modified biochar as an amendment and their implication for environment.
    Zong Y; Chen H; Malik Z; Xiao Q; Lu S
    Environ Pollut; 2022 Jan; 293():118515. PubMed ID: 34793911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined effects of rice straw-derived biochar and water management on transformation of chromium and its uptake by rice in contaminated soils.
    Xiao W; Ye X; Zhu Z; Zhang Q; Zhao S; Chen D; Gao N; Hu J
    Ecotoxicol Environ Saf; 2021 Jan; 208():111506. PubMed ID: 33120269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Fe
    Yao Y; Zhou H; Yan XL; Yang X; Huang KW; Liu J; Li LJ; Zhang JY; Gu JF; Zhou Y; Liao BH
    Environ Sci Pollut Res Int; 2021 Apr; 28(14):18050-18061. PubMed ID: 33410055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of goethite-combined/modified biochar for cadmium and arsenic remediation in alkaline paddy soil.
    Abdelrhman F; Gao J; Ali U; Wan N; Hu H
    Environ Sci Pollut Res Int; 2022 Jun; 29(27):40745-40754. PubMed ID: 35083675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidating the redox-driven dynamic interactions between arsenic and iron-impregnated biochar in a paddy soil using geochemical and spectroscopic techniques.
    Yang X; Shaheen SM; Wang J; Hou D; Ok YS; Wang SL; Wang H; Rinklebe J
    J Hazard Mater; 2022 Jan; 422():126808. PubMed ID: 34399221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.