BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36878862)

  • 1. Biomass to Aromatic Amine Module: Alkali Catalytic Conversion of N-Acetylglucosamine into Unsubstituted 3-Acetamidofuran by Retro-Aldol Condensation.
    Lin C; Yang H; Gao X; Zhuang Y; Feng C; Wu H; Gan H; Cao F; Wei P; Ouyang P
    ChemSusChem; 2023 Jun; 16(12):e202300133. PubMed ID: 36878862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct conversion of chitin derived N-acetyl-D-glucosamine into 3-acetamido-5-acetylfuran in deep eutectic solvents.
    Wang K; Xiao Y; Wu C; Feng Y; Liu Z; Zhu X; Zang H
    Carbohydr Res; 2023 Feb; 524():108742. PubMed ID: 36716693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Valorization of chitin biomass into N-containing chemical 3-acetamido-5-acetylfuran catalyzed by simple Lewis acid.
    Zang H; Feng Y; Zhang M; Wang K; Du Y; Lv Y; Qin Z; Xiao Y
    Carbohydr Res; 2022 Dec; 522():108679. PubMed ID: 36182823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile Preparation of 3-Acetamido-5-acetylfuran from N-Acetyl-d-glucosamine by using Commercially Available Aluminum Salts.
    Padovan D; Kobayashi H; Fukuoka A
    ChemSusChem; 2020 Jul; 13(14):3594-3598. PubMed ID: 32410361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple one-pot dehydration process to convert N-acetyl-D-glucosamine into a nitrogen-containing compound, 3-acetamido-5-acetylfuran.
    Omari KW; Dodot L; Kerton FM
    ChemSusChem; 2012 Sep; 5(9):1767-72. PubMed ID: 22887942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient conversion of N-acetyl-
    Wang J; Zang H; Jiao S; Wang K; Shang Z; Li H; Lou J
    Sci Total Environ; 2020 Mar; 710():136293. PubMed ID: 31926412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research progress of catalysts for aldol condensation of biomass based compounds.
    Zhang X; Li Y; Qian C; An L; Wang W; Li X; Shao X; Li Z
    RSC Adv; 2023 Mar; 13(14):9466-9478. PubMed ID: 36968059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subcritical water hydrolysis of N-acetyl-D-glucosamine: Hydrolysis mechanism, reaction pathways and optimization for selective production of 5-HMF and levulinic acid.
    Kulkarni SP; Dure SN; Joshi SS; Pandare KV; Mali NA
    Carbohydr Res; 2022 Jun; 516():108560. PubMed ID: 35483153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of N-Acetylglucosamine to 3-Acetamido-5-Acetylfuran over Al-Exchanged Montmorillonite.
    Yamazaki K; Hiyoshi N; Yamaguchi A
    ChemistryOpen; 2023 Dec; 12(12):e202300148. PubMed ID: 37988701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tandem catalysis for the production of alkyl lactates from ketohexoses at moderate temperatures.
    Orazov M; Davis ME
    Proc Natl Acad Sci U S A; 2015 Sep; 112(38):11777-82. PubMed ID: 26372958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR investigations on the proline-catalyzed aldehyde self-condensation: Mannich mechanism, dienamine detection, and erosion of the aldol addition selectivity.
    Schmid MB; Zeitler K; Gschwind RM
    J Org Chem; 2011 May; 76(9):3005-15. PubMed ID: 21446689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photocatalytic Production of Ethanolamines and Ethylenediamines from Bio-Polyols over a Cu/TiO
    Liu M; Li H; Zhang J; Liu H; Wang F
    Angew Chem Int Ed Engl; 2024 Jan; 63(5):e202315795. PubMed ID: 38065838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct catalytic enantio- and diastereoselective aldol reaction of thioamides.
    Iwata M; Yazaki R; Chen IH; Sureshkumar D; Kumagai N; Shibasaki M
    J Am Chem Soc; 2011 Apr; 133(14):5554-60. PubMed ID: 21417332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose Hydrogenolysis into 1,2-Propanediol Using a Pt/deAl@Mg(OH)
    Wang S; Jiang J; Gu M; Song Y; Zhao J; Shen Z; Zhou X; Zhang Y
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent progress of low-temperature plasma technology in biorefining process.
    Qin L; Li OL
    Nano Converg; 2023 Aug; 10(1):38. PubMed ID: 37615807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic upgrading of biomass-derived methyl ketones to liquid transportation fuel precursors by an organocatalytic approach.
    Sankaranarayanapillai S; Sreekumar S; Gomes J; Grippo A; Arab GE; Head-Gordon M; Toste FD; Bell AT
    Angew Chem Int Ed Engl; 2015 Apr; 54(15):4673-7. PubMed ID: 25704593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic conversion of cellulosic biomass to ethylene glycol: Effects of inorganic impurities in biomass.
    Pang J; Zheng M; Sun R; Song L; Wang A; Wang X; Zhang T
    Bioresour Technol; 2015 Jan; 175():424-9. PubMed ID: 25459851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dehydration of
    van der Loo CHM; Borst MLG; Pouwer K; Minnaard AJ
    Org Biomol Chem; 2021 Dec; 19(46):10105-10111. PubMed ID: 34755732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalyst Control over Twofold and Higher-Order Stereogenicity by Atroposelective Arene Formation.
    Schmidt TA; Sparr C
    Acc Chem Res; 2021 Jun; 54(12):2764-2774. PubMed ID: 34056908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A benzannulation protocol to prepare substituted aryl amines using a Michael-aldol reaction of beta-keto sulfones.
    Kiren S; Padwa A
    J Org Chem; 2009 Oct; 74(20):7781-9. PubMed ID: 19777998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.