These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36878955)

  • 1. The influence of solar-modulated regional circulations and galactic cosmic rays on global cloud distribution.
    Kumar V; Dhaka SK; Hitchman MH; Yoden S
    Sci Rep; 2023 Mar; 13(1):3707. PubMed ID: 36878955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Cosmic rays as the main factor affecting solar variability on climatic and atmospheric parameters].
    Raspopov OM; Shumilov OI; Kasatkina EA
    Biofizika; 1998; 43(5):902-8. PubMed ID: 9914850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining solar effects in Neptune's atmosphere.
    Aplin KL; Harrison RG
    Nat Commun; 2016 Jul; 7():11976. PubMed ID: 27417301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cosmic rays, clouds, and climate.
    Carslaw KS; Harrison RG; Kirkby J
    Science; 2002 Nov; 298(5599):1732-7. PubMed ID: 12459578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct weakening of tropical circulations from masked CO2 radiative forcing.
    Merlis TM
    Proc Natl Acad Sci U S A; 2015 Oct; 112(43):13167-71. PubMed ID: 26460034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Depth-dose equivalent relationship for cosmic rays at various solar minima.
    Badhwar GD; Cucinotta FA; O'Neill PM
    Radiat Res; 1993 Apr; 134(1):9-15. PubMed ID: 8475259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Behaviour of Galactic Cosmic-Ray Intensity During Solar Activity Cycle 24.
    Ross E; Chaplin WJ
    Sol Phys; 2019; 294(1):8. PubMed ID: 30872867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low cloud properties influenced by cosmic rays.
    Marsh ND; Svensmark H
    Phys Rev Lett; 2000 Dec; 85(23):5004-7. PubMed ID: 11102172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ARCTIC CHANGE AND POSSIBLE INFLUENCE ON MID-LATITUDE CLIMATE AND WEATHER: A US CLIVAR White Paper.
    Cohen J; Zhang X; Francis J; Jung T; Kwok R; Overland J; Ballinger T; Blackport R; Bhatt US; Chen H; Coumou D; Feldstein S; Handorf D; Hell M; Henderson G; Ionita M; Kretschmer M; Laliberte F; Lee S; Linderholm H; Maslowski W; Rigor I; Routson C; Screen J; Semmler T; Singh D; Smith D; Stroeve J; Taylor PC; Vihma T; Wang M; Wang S; Wu Y; Wendisch M; Yoon J
    US CLIVAR Rep; 2018 Mar; n/a():. PubMed ID: 31633127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffuse sunlight and cosmic rays: Missing pieces of the forest growth change attribution puzzle?
    Bontemps JD; Svensmark H
    Sci Total Environ; 2022 Feb; 806(Pt 1):150469. PubMed ID: 34563903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilizing AI to unveil the nonlinear interplay of convection, drift, and diffusion on galactic cosmic ray modulation in the inner heliosphere.
    Inceoglu F; Pacini AA; Loto'aniu PTM
    Sci Rep; 2022 Dec; 12(1):20712. PubMed ID: 36456812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-energy break in the spectrum of Galactic cosmic rays.
    Neronov A; Semikoz DV; Taylor AM
    Phys Rev Lett; 2012 Feb; 108(5):051105. PubMed ID: 22400923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRaTER observations and permissible mission duration for human operations in deep space.
    de Wet WC; Slaba TC; Rahmanifard F; Wilson JK; Jordan AP; Townsend LW; Schwadron NA; Spence HE
    Life Sci Space Res (Amst); 2020 Aug; 26():149-162. PubMed ID: 32718681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation.
    Kirkby J; Curtius J; Almeida J; Dunne E; Duplissy J; Ehrhart S; Franchin A; Gagné S; Ickes L; Kürten A; Kupc A; Metzger A; Riccobono F; Rondo L; Schobesberger S; Tsagkogeorgas G; Wimmer D; Amorim A; Bianchi F; Breitenlechner M; David A; Dommen J; Downard A; Ehn M; Flagan RC; Haider S; Hansel A; Hauser D; Jud W; Junninen H; Kreissl F; Kvashin A; Laaksonen A; Lehtipalo K; Lima J; Lovejoy ER; Makhmutov V; Mathot S; Mikkilä J; Minginette P; Mogo S; Nieminen T; Onnela A; Pereira P; Petäjä T; Schnitzhofer R; Seinfeld JH; Sipilä M; Stozhkov Y; Stratmann F; Tomé A; Vanhanen J; Viisanen Y; Vrtala A; Wagner PE; Walther H; Weingartner E; Wex H; Winkler PM; Carslaw KS; Worsnop DR; Baltensperger U; Kulmala M
    Nature; 2011 Aug; 476(7361):429-33. PubMed ID: 21866156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atmospheric cosmic rays and solar energetic particles at aircraft altitudes.
    O'Brien K; Friedberg W; Sauer HH; Smart DF
    Environ Int; 1996; 22 Suppl 1():S9-44. PubMed ID: 11542509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Walker circulation response to extratropical radiative forcing.
    Kang SM; Xie SP; Shin Y; Kim H; Hwang YT; Stuecker MF; Xiang B; Hawcroft M
    Sci Adv; 2020 Nov; 6(47):. PubMed ID: 33219035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The atmospheric cosmic- and solar energetic particle radiation environment at aircraft altitudes.
    O'Brien K; Friedberg W; Smart DF; Sauer HH
    Adv Space Res; 1998; 21(12):1739-48. PubMed ID: 11542893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NAIRAS aircraft radiation model development, dose climatology, and initial validation.
    Mertens CJ; Meier MM; Brown S; Norman RB; Xu X
    Space Weather; 2013 Oct; 11(10):603-635. PubMed ID: 26213513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overview of on-board measurements during solar storm periods.
    Beck P; Dyer C; Fuller N; Hands A; Latocha M; Rollet S; Spurný F
    Radiat Prot Dosimetry; 2009 Oct; 136(4):297-303. PubMed ID: 19825832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A relationship between galactic cosmic radiation and tree rings.
    Dengel S; Aeby D; Grace J
    New Phytol; 2009 Nov; 184(3):545-551. PubMed ID: 19754637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.