These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36879041)

  • 21. Assessment of Glial Scar, Tissue Sparing, Behavioral Recovery and Axonal Regeneration following Acute Transplantation of Genetically Modified Human Umbilical Cord Blood Cells in a Rat Model of Spinal Cord Contusion.
    Mukhamedshina YO; Garanina EE; Masgutova GA; Galieva LR; Sanatova ER; Chelyshev YA; Rizvanov AA
    PLoS One; 2016; 11(3):e0151745. PubMed ID: 27003408
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combined VEGF and PDGF treatment reduces secondary degeneration after spinal cord injury.
    Lutton C; Young YW; Williams R; Meedeniya AC; Mackay-Sim A; Goss B
    J Neurotrauma; 2012 Mar; 29(5):957-70. PubMed ID: 21568693
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reduced vascular endothelial growth factor expression in contusive spinal cord injury.
    Herrera JJ; Nesic O; Narayana PA
    J Neurotrauma; 2009 Jul; 26(7):995-1003. PubMed ID: 19257807
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acute intermittent hypoxia and rehabilitative training following cervical spinal injury alters neuronal hypoxia- and plasticity-associated protein expression.
    Hassan A; Arnold BM; Caine S; Toosi BM; Verge VMK; Muir GD
    PLoS One; 2018; 13(5):e0197486. PubMed ID: 29775479
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vascular endothelial growth factor activates neural stem cells through epidermal growth factor receptor signal after spinal cord injury.
    Liu SM; Xiao ZF; Li X; Zhao YN; Wu XM; Han J; Chen B; Li JY; Fan CX; Xu B; Xue XY; Xue WW; Yang Y; Dai JW
    CNS Neurosci Ther; 2019 Mar; 25(3):375-385. PubMed ID: 30155986
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The secretome of apoptotic human peripheral blood mononuclear cells attenuates secondary damage following spinal cord injury in rats.
    Haider T; Höftberger R; Rüger B; Mildner M; Blumer R; Mitterbauer A; Buchacher T; Sherif C; Altmann P; Redl H; Gabriel C; Gyöngyösi M; Fischer MB; Lubec G; Ankersmit HJ
    Exp Neurol; 2015 May; 267():230-42. PubMed ID: 25797576
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Administration of human peripheral blood-derived CD133+ cells accelerates functional recovery in a rat spinal cord injury model.
    Sasaki H; Ishikawa M; Tanaka N; Nakanishi K; Kamei N; Asahara T; Ochi M
    Spine (Phila Pa 1976); 2009 Feb; 34(3):249-54. PubMed ID: 19148043
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The combined effect of granulocyte-colony stimulating factor (G-CSF) treatment and exercise in rats with spinal cord injury.
    Park CH; Joa KL; Lee MO; Yoon SH; Kim MO
    J Spinal Cord Med; 2020 May; 43(3):339-346. PubMed ID: 30230978
    [No Abstract]   [Full Text] [Related]  

  • 29. Influences of HIF-lα on Bax/Bcl-2 and VEGF expressions in rats with spinal cord injury.
    Chen MH; Ren QX; Yang WF; Chen XL; Lu C; Sun J
    Int J Clin Exp Pathol; 2013; 6(11):2312-22. PubMed ID: 24228092
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exosomal OTULIN from M2 macrophages promotes the recovery of spinal cord injuries via stimulating Wnt/β-catenin pathway-mediated vascular regeneration.
    Luo Z; Peng W; Xu Y; Xie Y; Liu Y; Lu H; Cao Y; Hu J
    Acta Biomater; 2021 Dec; 136():519-532. PubMed ID: 34551329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bone marrow-derived mesenchymal stem cells expressing the Shh transgene promotes functional recovery after spinal cord injury in rats.
    Jia Y; Wu D; Zhang R; Shuang W; Sun J; Hao H; An Q; Liu Q
    Neurosci Lett; 2014 Jun; 573():46-51. PubMed ID: 24837681
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SDF-1 overexpression by mesenchymal stem cells enhances GAP-43-positive axonal growth following spinal cord injury.
    Stewart AN; Matyas JJ; Welchko RM; Goldsmith AD; Zeiler SE; Hochgeschwender U; Lu M; Nan Z; Rossignol J; Dunbar GL
    Restor Neurol Neurosci; 2017; 35(4):395-411. PubMed ID: 28598857
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intravenous delivery of microRNA-133b along with Argonaute-2 enhances spinal cord recovery following cervical contusion in mice.
    Danilov CA; Gu Y; Punj V; Wu Z; Steward O; Schönthal AH; Tahara SM; Hofman FM; Chen TC
    Spine J; 2020 Jul; 20(7):1138-1151. PubMed ID: 32145360
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neuronal regeneration after acute spinal cord injury in adult rats.
    He B; Nan G
    Spine J; 2016 Dec; 16(12):1459-1467. PubMed ID: 27349629
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increased vascularization promotes functional recovery in the transected spinal cord rats by implanted vascular endothelial growth factor-targeting collagen scaffold.
    Wang L; Shi Q; Dai J; Gu Y; Feng Y; Chen L
    J Orthop Res; 2018 Mar; 36(3):1024-1034. PubMed ID: 28786500
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lentivirus-mediated PGC-1α overexpression protects against traumatic spinal cord injury in rats.
    Hu J; Lang Y; Zhang T; Ni S; Lu H
    Neuroscience; 2016 Jul; 328():40-9. PubMed ID: 27132229
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Review of the regeneration mechanism of complete spinal cord injury].
    Li J; Li X; Xiao Z; Dai J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Jun; 32(6):641-649. PubMed ID: 29905039
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cell-type specific expression of constitutively-active Rheb promotes regeneration of bulbospinal respiratory axons following cervical SCI.
    Urban MW; Ghosh B; Strojny LR; Block CG; Blazejewski SM; Wright MC; Smith GM; Lepore AC
    Exp Neurol; 2018 May; 303():108-119. PubMed ID: 29453976
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extremely low frequency magnetic field protects injured spinal cord from the microglia- and iron-induced tissue damage.
    Dey S; Bose S; Kumar S; Rathore R; Mathur R; Jain S
    Electromagn Biol Med; 2017; 36(4):330-340. PubMed ID: 29140736
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamics of biomarkers across the stages of traumatic spinal cord injury - implications for neural plasticity and repair.
    Begenisic T; Pavese C; Aiachini B; Nardone A; Rossi D
    Restor Neurol Neurosci; 2021; 39(5):339-366. PubMed ID: 34657853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.