These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36879041)

  • 41. Angiogenic microspheres promote neural regeneration and motor function recovery after spinal cord injury in rats.
    Yu S; Yao S; Wen Y; Wang Y; Wang H; Xu Q
    Sci Rep; 2016 Sep; 6():33428. PubMed ID: 27641997
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transplantation of Human Amniotic Mesenchymal Stem Cells Promotes Functional Recovery in a Rat Model of Traumatic Spinal Cord Injury.
    Zhou HL; Zhang XJ; Zhang MY; Yan ZJ; Xu ZM; Xu RX
    Neurochem Res; 2016 Oct; 41(10):2708-2718. PubMed ID: 27351200
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation of direct and cell-mediated triple-gene therapy in spinal cord injury in rats.
    Islamov RR; Izmailov AA; Sokolov ME; Fadeev PO; Bashirov FV; Eremeev AA; Shaymardanova GF; Shmarov MM; Naroditskiy BS; Chelyshev YA; Lavrov IA; Palotás A
    Brain Res Bull; 2017 Jun; 132():44-52. PubMed ID: 28529158
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Conditioned medium of olfactory ensheathing cells promotes the functional recovery and axonal regeneration after contusive spinal cord injury.
    Gu M; Gao Z; Li X; Guo L; Lu T; Li Y; He X
    Brain Res; 2017 Jan; 1654(Pt A):43-54. PubMed ID: 27789279
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Vascular Endothelial Growth Factor-Transfected Bone Marrow Mesenchymal Stem Cells Improve the Recovery of Motor and Sensory Functions of Rats With Spinal Cord Injury.
    Liu X; Xu W; Zhang Z; Liu H; Lv L; Han D; Liu L; Yao A; Xu T
    Spine (Phila Pa 1976); 2020 Apr; 45(7):E364-E372. PubMed ID: 32168135
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neuroprotector effect of stem cells from human exfoliated deciduous teeth transplanted after traumatic spinal cord injury involves inhibition of early neuronal apoptosis.
    Nicola FDC; Marques MR; Odorcyk F; Arcego DM; Petenuzzo L; Aristimunha D; Vizuete A; Sanches EF; Pereira DP; Maurmann N; Dalmaz C; Pranke P; Netto CA
    Brain Res; 2017 May; 1663():95-105. PubMed ID: 28322752
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Polycaprolactone/polysialic acid hybrid, multifunctional nanofiber scaffolds for treatment of spinal cord injury.
    Zhang S; Wang XJ; Li WS; Xu XL; Hu JB; Kang XQ; Qi J; Ying XY; You J; Du YZ
    Acta Biomater; 2018 Sep; 77():15-27. PubMed ID: 30126591
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sustained expression of vascular endothelial growth factor and angiopoietin-1 improves blood-spinal cord barrier integrity and functional recovery after spinal cord injury.
    Herrera JJ; Sundberg LM; Zentilin L; Giacca M; Narayana PA
    J Neurotrauma; 2010 Nov; 27(11):2067-76. PubMed ID: 20799882
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Meningeal cells and glia establish a permissive environment for axon regeneration after spinal cord injury in newts.
    Zukor KA; Kent DT; Odelberg SJ
    Neural Dev; 2011 Jan; 6():1. PubMed ID: 21205291
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Delayed administration of elezanumab, a human anti-RGMa neutralizing monoclonal antibody, promotes recovery following cervical spinal cord injury.
    Mothe AJ; Jacobson PB; Caprelli M; Ulndreaj A; Rahemipour R; Huang L; Monnier PP; Fehlings MG; Tator CH
    Neurobiol Dis; 2022 Oct; 172():105812. PubMed ID: 35810963
    [TBL] [Abstract][Full Text] [Related]  

  • 51. DHAM-BMSC matrix promotes axonal regeneration and functional recovery after spinal cord injury in adult rats.
    Liang H; Liang P; Xu Y; Wu J; Liang T; Xu X
    J Neurotrauma; 2009 Oct; 26(10):1745-57. PubMed ID: 19413502
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bone marrow mesenchymal stem cells (BMSCs) improved functional recovery of spinal cord injury partly by promoting axonal regeneration.
    Lin L; Lin H; Bai S; Zheng L; Zhang X
    Neurochem Int; 2018 May; 115():80-84. PubMed ID: 29458076
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Respiratory axon regeneration in the chronically injured spinal cord.
    Cheng L; Sami A; Ghosh B; Goudsward HJ; Smith GM; Wright MC; Li S; Lepore AC
    Neurobiol Dis; 2021 Jul; 155():105389. PubMed ID: 33975016
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The multifaceted effects of agmatine on functional recovery after spinal cord injury through Modulations of BMP-2/4/7 expressions in neurons and glial cells.
    Park YM; Lee WT; Bokara KK; Seo SK; Park SH; Kim JH; Yenari MA; Park KA; Lee JE
    PLoS One; 2013; 8(1):e53911. PubMed ID: 23349763
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neural stem cell-derived exosomes facilitate spinal cord functional recovery after injury by promoting angiogenesis.
    Zhong D; Cao Y; Li CJ; Li M; Rong ZJ; Jiang L; Guo Z; Lu HB; Hu JZ
    Exp Biol Med (Maywood); 2020 Jan; 245(1):54-65. PubMed ID: 31903774
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The role of RhoA in retrograde neuronal death and axon regeneration after spinal cord injury.
    Hu J; Zhang G; Rodemer W; Jin LQ; Shifman M; Selzer ME
    Neurobiol Dis; 2017 Feb; 98():25-35. PubMed ID: 27888137
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Gene transfer of glial cell line-derived neurotrophic factor promotes functional recovery following spinal cord contusion.
    Tai MH; Cheng H; Wu JP; Liu YL; Lin PR; Kuo JS; Tseng CJ; Tzeng SF
    Exp Neurol; 2003 Oct; 183(2):508-15. PubMed ID: 14552891
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Decellularized brain matrix enhances macrophage polarization and functional improvements in rat spinal cord injury.
    Hong JY; Seo Y; Davaa G; Kim HW; Kim SH; Hyun JK
    Acta Biomater; 2020 Jan; 101():357-371. PubMed ID: 31711898
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microtubule Stabilization Promotes Microcirculation Reconstruction After Spinal Cord Injury.
    Duan YY; Chai Y; Zhang NL; Zhao DM; Yang C
    J Mol Neurosci; 2021 Mar; 71(3):583-595. PubMed ID: 32901373
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Necessity for re-vascularization after spinal cord injury and the search for potential therapeutic options.
    Graumann U; Ritz MF; Hausmann O
    Curr Neurovasc Res; 2011 Nov; 8(4):334-41. PubMed ID: 22023610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.