These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36880130)

  • 1. Simultaneously Enhanced Formation of Pyrazines and Furans during Thermal Degradation of the Glycyl-l-glutamine Amadori Compound by Selected Exogenous Amino Acids and Appropriate Elevated Temperatures.
    Xia X; Zhou T; Zhang H; Cui H; Zhang F; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2023 Mar; 71(10):4346-4357. PubMed ID: 36880130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural diversity and concentration dependence of pyrazine formation: Exogenous amino substrates and reaction parameters during thermal processing of l-alanyl-l-glutamine Amadori compound.
    Xia X; Zhai Y; Cui H; Zhang H; Hayat K; Zhang X; Ho CT
    Food Chem; 2022 Oct; 390():133144. PubMed ID: 35594769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promoted Formation of Pyrazines and Sulfur-Containing Volatile Compounds through Interaction of Extra-Added Glutathione or Its Constituent Amino Acids and Secondary Products of Thermally Degraded
    Feng L; Cui H; Chen P; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2022 Jul; 70(29):9095-9105. PubMed ID: 35838405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promotion or Inhibition Effects of Exogenous Glutathione-Degraded Amino Acids on the Formation of 2,3-Butanedione and Pyrazines via Varied Pathways of Interaction with α-Dicarbonyl Compounds Derived from
    Zhou T; Xia X; Cui H; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2023 Oct; 71(39):14312-14321. PubMed ID: 37737140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exogenous Threonine-Induced Conversion of Threonine-Xylose Amadori Compound to Heyns Compound for Efficiently Promoting the Formation of Pyrazines.
    Chen P; Cui H; Zhou T; Feng L; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2023 Jul; 71(29):11141-11149. PubMed ID: 37440603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristic flavor formation of thermally processed N-(1-deoxy-α-d-ribulos-1-yl)-glycine: Decisive role of additional amino acids and promotional effect of glyoxal.
    Zhan H; Cui H; Yu J; Hayat K; Wu X; Zhang X; Ho CT
    Food Chem; 2022 Mar; 371():131137. PubMed ID: 34562777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competitive Formation of 2,3-Butanedione and Pyrazines through Intervention of Added Cysteine during Thermal Processing of Alanine-Xylose Amadori Compounds.
    Zhou T; Xia X; Cui H; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2022 Dec; 70(48):15202-15212. PubMed ID: 36444759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of N-(1-Deoxy-Α-D-Xylulos-1-Yl)-Glutamic Acid via Aqueous Maillard Reaction Coupled with Vacuum Dehydration and Its Flavor Formation Through Thermal Treatment of Baking Process.
    Xu M; Cui H; Sun F; Jia C; Zhang SL; Hussain S; Tahir MU; Zhang X; Hayat K
    J Food Sci; 2019 Aug; 84(8):2171-2180. PubMed ID: 31313307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycine, Diglycine, and Triglycine Exhibit Different Reactivities in the Formation and Degradation of Amadori Compounds.
    Xia X; Zhai Y; Cui H; Zhang H; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2022 Nov; 70(47):14907-14918. PubMed ID: 36378039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exogenous Alanine Promoting the Reaction between Amadori Compound and Deoxyxylosone and Inhibiting the Formation of 2-Furfural during Thermal Treatment.
    Zhou T; Huang M; Cui H; Chen P; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2024 Mar; 72(11):5878-5886. PubMed ID: 38462902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of pyrazines formation in methionine/glucose and corresponding Amadori rearrangement product model.
    Deng S; Cui H; Hayat K; Zhai Y; Zhang Q; Zhang X; Ho CT
    Food Chem; 2022 Jul; 382():132500. PubMed ID: 35245757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of Amadori-Type Conjugates in a Peptide Maillard Reaction and Their Corresponding Influence on the Formation of Pyrazines.
    Zou T; Liu J; Song H; Liu Y
    J Food Sci; 2018 Jun; 83(6):1588-1595. PubMed ID: 29745978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility Study of Amadori Rearrangement Products of Glycine, Diglycine, Triglycine, and Glucose as Potential Food Additives for Production, Stability, and Flavor Formation.
    Luo Y; Zhu S; Peng J; Cui H; Huang Q; Xu B; Ho CT
    J Agric Food Chem; 2024 Jan; 72(1):657-669. PubMed ID: 38109376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of Fluorescent Maillard Reaction Intermediates of Peptide and Glucose during Thermal Reaction and Its Mechanism.
    Xia X; Zhou T; Yu J; Cui H; Zhang F; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2023 Jun; 71(22):8569-8579. PubMed ID: 37232325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aqueous Preparation of Maillard Reaction Intermediate from Glutathione and Xylose and its Volatile Formation During Thermal Treatment.
    Sun F; Cui H; Zhan H; Xu M; Hayat K; Tahir MU; Hussain S; Zhang X; Ho CT
    J Food Sci; 2019 Dec; 84(12):3584-3593. PubMed ID: 31721210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asparagine-Glucose Amadori Compounds: Formation, Characterization, and Analysis in Dry Jujube Fruit.
    Xiao Q; Huang Q; Ho CT
    J Agric Food Chem; 2024 Apr; 72(13):7344-7353. PubMed ID: 38502793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cysteine-Induced pH-Dependent Formation of Thiols and Sulfides or 2-Acetylthiazole and Pyrazines during Thermal Treatment of
    Zhou T; Xia X; Cui H; Zhai Y; Zhang F; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2023 Feb; 71(5):2472-2481. PubMed ID: 36696632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of Pyrazine Formation Intervened by Oxidized Methionines during Thermal Degradation of the Methionine-Glucose Amadori Compound.
    Deng S; Zhai Y; Cui H; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2022 Nov; 70(45):14457-14467. PubMed ID: 36342227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Free Amino Acids, Oligopeptides, and Polypeptides on the Formation of Pyrazines in Maillard Model Systems.
    Scalone GL; Cucu T; De Kimpe N; De Meulenaer B
    J Agric Food Chem; 2015 Jun; 63(22):5364-72. PubMed ID: 25971942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependence and Conversion Mechanism for Selective Preparation of a Xylose-Diglycine Amadori Compound and a Cross-linking Product in an Aqueous Maillard Reaction.
    Ma M; Cui H; Wang Z; Hayat K; Jia C; Xu Y; Zhang X; Ho CT
    J Agric Food Chem; 2021 Dec; 69(49):14915-14925. PubMed ID: 34856795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.