These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36880282)

  • 1. Protected areas not likely to serve as steppingstones for species undergoing climate-induced range shifts.
    Parks SA; Holsinger LM; Abatzoglou JT; Littlefield CE; Zeller KA
    Glob Chang Biol; 2023 May; 29(10):2681-2696. PubMed ID: 36880282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "No-regrets" pathways for navigating climate change: planning for connectivity with land use, topography, and climate.
    Schloss CA; Cameron DR; McRae BH; Theobald DM; Jones A
    Ecol Appl; 2022 Jan; 32(1):e02468. PubMed ID: 34614272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human land uses reduce climate connectivity across North America.
    Parks SA; Carroll C; Dobrowski SZ; Allred BW
    Glob Chang Biol; 2020 May; 26(5):2944-2955. PubMed ID: 31961042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Value of protected areas to avian persistence across 20 years of climate and land-use change.
    Peach MA; Cohen JB; Frair JL; Zuckerberg B; Sullivan P; Porter WF; Lang C
    Conserv Biol; 2019 Apr; 33(2):423-433. PubMed ID: 30113109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the connectivity of a protected areas' network under the prism of global change: the efficiency of the European Natura 2000 network for four birds of prey.
    Mazaris AD; Papanikolaou AD; Barbet-Massin M; Kallimanis AS; Jiguet F; Schmeller DS; Pantis JD
    PLoS One; 2013; 8(3):e59640. PubMed ID: 23527237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Species-free species distribution models describe macroecological properties of protected area networks.
    Robinson JL; Fordyce JA
    PLoS One; 2017; 12(3):e0173443. PubMed ID: 28301488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climatic, topographic, and anthropogenic factors determine connectivity between current and future climate analogs in North America.
    Carroll C; Parks SA; Dobrowski SZ; Roberts DR
    Glob Chang Biol; 2018 Nov; 24(11):5318-5331. PubMed ID: 29963741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating functional connectivity in designing networks of protected areas under climate change: A caribou case-study.
    Bauduin S; Cumming SG; St-Laurent MH; McIntire EJB
    PLoS One; 2020; 15(9):e0238821. PubMed ID: 32997673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Connecting today's climates to future climate analogs to facilitate movement of species under climate change.
    Littlefield CE; McRae BH; Michalak JL; Lawler JJ; Carroll C
    Conserv Biol; 2017 Dec; 31(6):1397-1408. PubMed ID: 28339121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A resilient and connected network of sites to sustain biodiversity under a changing climate.
    Anderson MG; Clark M; Olivero AP; Barnett AR; Hall KR; Cornett MW; Ahlering M; Schindel M; Unnasch B; Schloss C; Cameron DR
    Proc Natl Acad Sci U S A; 2023 Feb; 120(7):e2204434119. PubMed ID: 36745800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicted climate shifts within terrestrial protected areas worldwide.
    Hoffmann S; Irl SDH; Beierkuhnlein C
    Nat Commun; 2019 Oct; 10(1):4787. PubMed ID: 31636257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global progress in incorporating climate adaptation into land protection for biodiversity since Aichi targets.
    Carrasco L; Papeş M; Sheldon KS; Giam X
    Glob Chang Biol; 2021 May; 27(9):1788-1801. PubMed ID: 33570817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential relocation of climatic environments suggests high rates of climate displacement within the North American protection network.
    Batllori E; Parisien MA; Parks SA; Moritz MA; Miller C
    Glob Chang Biol; 2017 Aug; 23(8):3219-3230. PubMed ID: 28211141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Risk from future climate change to Pakistan's protected area network: A composite analysis for hotspot identification.
    Siddique MT; García Molinos J
    Sci Total Environ; 2024 Mar; 916():169948. PubMed ID: 38211866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expanding China's protected areas network to enhance resilience of climate connectivity.
    Xu D; Peng J; Dong J; Jiang H; Liu M; Luo Y; Xu Z
    Sci Bull (Beijing); 2024 Jul; 69(14):2273-2280. PubMed ID: 38724302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vulnerability of ecosystems to climate change moderated by habitat intactness.
    Eigenbrod F; Gonzalez P; Dash J; Steyl I
    Glob Chang Biol; 2015 Jan; 21(1):275-86. PubMed ID: 25059822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facilitating climate-change-induced range shifts across continental land-use barriers.
    Robillard CM; Coristine LE; Soares RN; Kerr JT
    Conserv Biol; 2015 Dec; 29(6):1586-95. PubMed ID: 26193759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response to concerns raised about the likelihood of protected areas serving as steppingstones for species responding to climate change.
    Parks SA; Holsinger LM; Abatzoglou JT; Littlefield CE; Zeller KA
    Glob Chang Biol; 2023 Dec; 29(23):e7-e8. PubMed ID: 37715548
    [No Abstract]   [Full Text] [Related]  

  • 19. Identifying Corridors among Large Protected Areas in the United States.
    Belote RT; Dietz MS; McRae BH; Theobald DM; McClure ML; Irwin GH; McKinley PS; Gage JA; Aplet GH
    PLoS One; 2016; 11(4):e0154223. PubMed ID: 27104683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Achieving climate connectivity in a fragmented landscape.
    McGuire JL; Lawler JJ; McRae BH; Nuñez TA; Theobald DM
    Proc Natl Acad Sci U S A; 2016 Jun; 113(26):7195-200. PubMed ID: 27298349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.