BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36880305)

  • 21. The Histone Deacetylase SIRT6 Restrains Transcription Elongation via Promoter-Proximal Pausing.
    Etchegaray JP; Zhong L; Li C; Henriques T; Ablondi E; Nakadai T; Van Rechem C; Ferrer C; Ross KN; Choi JE; Samarakkody A; Ji F; Chang A; Sadreyev RI; Ramaswamy S; Nechaev S; Whetstine JR; Roeder RG; Adelman K; Goren A; Mostoslavsky R
    Mol Cell; 2019 Aug; 75(4):683-699.e7. PubMed ID: 31399344
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin.
    Vaquero A; Scher M; Lee D; Erdjument-Bromage H; Tempst P; Reinberg D
    Mol Cell; 2004 Oct; 16(1):93-105. PubMed ID: 15469825
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NAD+-dependent deacetylation of H4 lysine 16 by class III HDACs.
    Vaquero A; Sternglanz R; Reinberg D
    Oncogene; 2007 Aug; 26(37):5505-20. PubMed ID: 17694090
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increased Histone Acetylation and Decreased Expression of Specific Histone Deacetylases in Ultraviolet-Irradiated and Intrinsically Aged Human Skin In Vivo.
    Lee Y; Shin MH; Kim MK; Kim YK; Shin HS; Lee DH; Chung JH
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33670779
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Chemical Biology Approach to Reveal Sirt6-targeted Histone H3 Sites in Nucleosomes.
    Wang WW; Zeng Y; Wu B; Deiters A; Liu WR
    ACS Chem Biol; 2016 Jul; 11(7):1973-81. PubMed ID: 27152839
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6.
    Michishita E; McCord RA; Boxer LD; Barber MF; Hong T; Gozani O; Chua KF
    Cell Cycle; 2009 Aug; 8(16):2664-6. PubMed ID: 19625767
    [No Abstract]   [Full Text] [Related]  

  • 27. Acetylation-dependent ADP-ribosylation by Trypanosoma brucei Sir2.
    Kowieski TM; Lee S; Denu JM
    J Biol Chem; 2008 Feb; 283(9):5317-26. PubMed ID: 18165239
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High glucose-induced oxidative stress represses sirtuin deacetylase expression and increases histone acetylation leading to neural tube defects.
    Yu J; Wu Y; Yang P
    J Neurochem; 2016 May; 137(3):371-83. PubMed ID: 26896748
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SIRT7 Is Activated by DNA and Deacetylates Histone H3 in the Chromatin Context.
    Tong Z; Wang Y; Zhang X; Kim DD; Sadhukhan S; Hao Q; Lin H
    ACS Chem Biol; 2016 Mar; 11(3):742-7. PubMed ID: 26907567
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis.
    Kim HS; Xiao C; Wang RH; Lahusen T; Xu X; Vassilopoulos A; Vazquez-Ortiz G; Jeong WI; Park O; Ki SH; Gao B; Deng CX
    Cell Metab; 2010 Sep; 12(3):224-36. PubMed ID: 20816089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ACSL5 genotype influence on fatty acid metabolism: a cellular, tissue, and whole-body study.
    Rajkumar A; Liaghati A; Chan J; Lamothe G; Dent R; Doucet É; Rabasa-Lhoret R; Prud'homme D; Harper ME; Tesson F
    Metabolism; 2018 Jun; 83():271-279. PubMed ID: 29605434
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of histone deacetylase on nonalcoholic fatty liver disease.
    Fu S; Yu M; Tan Y; Liu D
    Expert Rev Gastroenterol Hepatol; 2021 Apr; 15(4):353-361. PubMed ID: 33213187
    [No Abstract]   [Full Text] [Related]  

  • 33. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase.
    Imai S; Armstrong CM; Kaeberlein M; Guarente L
    Nature; 2000 Feb; 403(6771):795-800. PubMed ID: 10693811
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A crucial role of SUMOylation in modulating Sirt6 deacetylation of H3 at lysine 56 and its tumor suppressive activity.
    Cai J; Zuo Y; Wang T; Cao Y; Cai R; Chen FL; Cheng J; Mu J
    Oncogene; 2016 Sep; 35(37):4949-56. PubMed ID: 26898756
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chromatin regulation and genome maintenance by mammalian SIRT6.
    Tennen RI; Chua KF
    Trends Biochem Sci; 2011 Jan; 36(1):39-46. PubMed ID: 20729089
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure and biochemical functions of SIRT6.
    Pan PW; Feldman JL; Devries MK; Dong A; Edwards AM; Denu JM
    J Biol Chem; 2011 Apr; 286(16):14575-87. PubMed ID: 21362626
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lysine Deacetylases and Regulated Glycolysis in Macrophages.
    Shakespear MR; Iyer A; Cheng CY; Das Gupta K; Singhal A; Fairlie DP; Sweet MJ
    Trends Immunol; 2018 Jun; 39(6):473-488. PubMed ID: 29567326
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functions of site-specific histone acetylation and deacetylation.
    Shahbazian MD; Grunstein M
    Annu Rev Biochem; 2007; 76():75-100. PubMed ID: 17362198
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Histone Deacetylase 3 Couples Mitochondria to Drive IL-1β-Dependent Inflammation by Configuring Fatty Acid Oxidation.
    Chi Z; Chen S; Xu T; Zhen W; Yu W; Jiang D; Guo X; Wang Z; Zhang K; Li M; Zhang J; Fang H; Yang D; Ye Q; Yang X; Lin H; Yang F; Zhang X; Wang D
    Mol Cell; 2020 Oct; 80(1):43-58.e7. PubMed ID: 32937100
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enzymatic assays for NAD-dependent deacetylase activities.
    Landry J; Sternglanz R
    Methods; 2003 Sep; 31(1):33-9. PubMed ID: 12893171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.