These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 36880312)
1. Through-drop imaging of moving contact lines and contact areas on opaque water-repellent surfaces. Vieira A; Cui W; Jokinen V; Ras RHA; Zhou Q Soft Matter; 2023 Mar; 19(13):2350-2359. PubMed ID: 36880312 [TBL] [Abstract][Full Text] [Related]
2. Through-Drop Imaging of Liquid-Solid Interfaces: From Contact Angle Variations Along the Droplet Perimeter to Mapping of Contact Angles Across a Surface. Vieira A; Jokinen V; Lepikko S; Ras RHA; Zhou Q Langmuir; 2024 Apr; 40(17):9059-9067. PubMed ID: 38621291 [TBL] [Abstract][Full Text] [Related]
3. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
4. Generalized models for advancing and receding contact angles of fakir droplets on pillared and pored surfaces. Jiang Y; Xu W; Sarshar MA; Choi CH J Colloid Interface Sci; 2019 Sep; 552():359-371. PubMed ID: 31132638 [TBL] [Abstract][Full Text] [Related]
5. How Water Advances on Superhydrophobic Surfaces. Schellenberger F; Encinas N; Vollmer D; Butt HJ Phys Rev Lett; 2016 Mar; 116(9):096101. PubMed ID: 26991185 [TBL] [Abstract][Full Text] [Related]
6. Effect of roughness geometry on wetting and dewetting of rough PDMS surfaces. Kanungo M; Mettu S; Law KY; Daniel S Langmuir; 2014 Jul; 30(25):7358-68. PubMed ID: 24911256 [TBL] [Abstract][Full Text] [Related]
7. Direct observation of drops on slippery lubricant-infused surfaces. Schellenberger F; Xie J; Encinas N; Hardy A; Klapper M; Papadopoulos P; Butt HJ; Vollmer D Soft Matter; 2015 Oct; 11(38):7617-26. PubMed ID: 26291621 [TBL] [Abstract][Full Text] [Related]
8. Effect of surface texturing on superoleophobicity, contact angle hysteresis, and "robustness". Zhao H; Park KC; Law KY Langmuir; 2012 Oct; 28(42):14925-34. PubMed ID: 22992132 [TBL] [Abstract][Full Text] [Related]
9. On the uniqueness of the receding contact angle: effects of substrate roughness and humidity on evaporation of water drops. Pittoni PG; Lin CH; Yu TS; Lin SY Langmuir; 2014 Aug; 30(31):9346-54. PubMed ID: 25029610 [TBL] [Abstract][Full Text] [Related]
10. Depinning force of a receding droplet on pillared superhydrophobic surfaces: Analytical models. Sarshar MA; Jiang Y; Xu W; Choi CH J Colloid Interface Sci; 2019 May; 543():122-129. PubMed ID: 30782518 [TBL] [Abstract][Full Text] [Related]
11. Universal wetting transition of an evaporating water droplet on hydrophobic micro- and nano-structures. Bussonnière A; Bigdeli MB; Chueh DY; Liu Q; Chen P; Tsai PA Soft Matter; 2017 Feb; 13(5):978-984. PubMed ID: 28091660 [TBL] [Abstract][Full Text] [Related]
12. Droplet coalescence on water repellant surfaces. Nam Y; Seo D; Lee C; Shin S Soft Matter; 2015 Jan; 11(1):154-60. PubMed ID: 25375970 [TBL] [Abstract][Full Text] [Related]
13. Drop rebound after impact: the role of the receding contact angle. Antonini C; Villa F; Bernagozzi I; Amirfazli A; Marengo M Langmuir; 2013 Dec; 29(52):16045-50. PubMed ID: 24028086 [TBL] [Abstract][Full Text] [Related]
14. Cha H; Ma J; Kim YS; Li L; Sun L; Tong J; Miljkovic N ACS Nano; 2019 Nov; 13(11):13343-13353. PubMed ID: 31596565 [TBL] [Abstract][Full Text] [Related]
15. Hysteresis with regard to Cassie and Wenzel states on superhydrophobic surfaces. Patankar NA Langmuir; 2010 May; 26(10):7498-503. PubMed ID: 20085371 [TBL] [Abstract][Full Text] [Related]
16. Dynamic Contact Angles and Mechanisms of Motion of Water Droplets Moving on Nanopillared Superhydrophobic Surfaces: A Molecular Dynamics Simulation Study. Li H; Yan T; Fichthorn KA; Yu S Langmuir; 2018 Aug; 34(34):9917-9926. PubMed ID: 30059231 [TBL] [Abstract][Full Text] [Related]
17. Soft Wetting: Droplet Receding Contact Angles on Soft Superhydrophobic Surfaces. Jiang Y; Xu Z; Li B; Li J; Guan D Langmuir; 2023 Oct; 39(43):15401-15408. PubMed ID: 37857566 [TBL] [Abstract][Full Text] [Related]
18. Design of robust superhydrophobic surfaces. Wang D; Sun Q; Hokkanen MJ; Zhang C; Lin FY; Liu Q; Zhu SP; Zhou T; Chang Q; He B; Zhou Q; Chen L; Wang Z; Ras RHA; Deng X Nature; 2020 Jun; 582(7810):55-59. PubMed ID: 32494077 [TBL] [Abstract][Full Text] [Related]
19. Contact line friction and dynamic contact angles of a capillary bridge between superhydrophobic nanostructured surfaces. Lee E; Müller-Plathe F J Chem Phys; 2022 Jul; 157(2):024701. PubMed ID: 35840373 [TBL] [Abstract][Full Text] [Related]