These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 36880560)

  • 1. Suppressing Unfavorable Interfacial Reactions Using Polyanionic Oxides as Efficient Buffer Layers: Low-Cost Li
    Lee JY; Noh S; Seong JY; Lee S; Park YJ
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):12998-13011. PubMed ID: 36880560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving electrochemical performances of Lithium-rich oxide by cooperatively doping Cr and coating Li
    Tai Z; Zhu W; Shi M; Xin Y; Guo S; Wu Y; Chen Y; Liu Y
    J Colloid Interface Sci; 2020 Sep; 576():468-475. PubMed ID: 32473416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of LiTaO
    Lee JS; Park YJ
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38333-38345. PubMed ID: 34370435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Li
    Liang S; Yang D; Hu J; Kang S; Zhang X; Fan Y
    Membranes (Basel); 2023 Feb; 13(2):. PubMed ID: 36837719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Additive-Derived Surface Modification of Cathodes in All-Solid-State Batteries: The Effect of Lithium Difluorophosphate- and Lithium Difluoro(oxalato)borate-Derived Coating Layers.
    Joo MJ; Kim M; Chae S; Ko M; Park YJ
    ACS Appl Mater Interfaces; 2023 Dec; 15(51):59389-59402. PubMed ID: 38102994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-cost BPO
    Shi J; Ma Z; Wu D; Yu Y; Wang Z; Fang Y; Chen D; Shang S; Qu X; Li P
    Small; 2024 Mar; 20(13):e2307030. PubMed ID: 37964299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Passivation of the Cathode-Electrolyte Interface for 5 V-Class All-Solid-State Batteries.
    Liu G; Lu Y; Wan H; Weng W; Cai L; Li Z; Que X; Liu H; Yao X
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):28083-28090. PubMed ID: 32459459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving Interfacial Stability for All-Solid-State Secondary Batteries with Precursor-Based Gradient Doping.
    Ji YJ; Park YJ
    ACS Omega; 2024 Feb; 9(7):8405-8416. PubMed ID: 38405491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Electrochemical Stability and Extended Cycle Life in Sulfide-Based All-Solid-State Batteries: The Role of Li
    Park Y; Chang JH; Oh G; Kim AY; Chang H; Uenal M; Nam S; Kwon O
    Small; 2024 Mar; 20(11):e2305758. PubMed ID: 37936297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual function Li-reactive coating from residual lithium on Ni-rich NCM cathode material for Lithium-ion batteries.
    Sattar T; Sim SJ; Jin BS; Kim HS
    Sci Rep; 2021 Sep; 11(1):18590. PubMed ID: 34545169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cathode coating using LiInO
    Kwak HW; Park YJ
    Sci Rep; 2019 May; 9(1):8099. PubMed ID: 31147595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of Cathode Coating Using Niobate and Phosphate Hybrid Material for Sulfide-Based Solid-State Battery.
    Morino Y; Shiota A; Kanada S; Bong WSK; Kawamoto K; Inda Y; Tsukasaki H; Mori S; Iriyama Y
    ACS Appl Mater Interfaces; 2023 Aug; 15(30):36086-36095. PubMed ID: 37463070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Li3PO4-coated LiNi0.5Mn1.5O4: a stable high-voltage cathode material for lithium-ion batteries.
    Chong J; Xun S; Zhang J; Song X; Xie H; Battaglia V; Wang R
    Chemistry; 2014 Jun; 20(24):7479-85. PubMed ID: 24782138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precursor-based surface modification of cathodes using Ta and W for sulfide-based all-solid-state batteries.
    Lim CB; Park YJ
    Sci Rep; 2020 Jun; 10(1):10501. PubMed ID: 32601283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution Process of the Interfacial Chemical Reaction in Ni-Rich Layered Cathodes for All-Solid-State Batteries.
    Liu H; Liu X; Wang Z; Zhu L; Zhang X
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):943-956. PubMed ID: 38146938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superior Stability Secured by a Four-Phase Cathode Electrolyte Interface on a Ni-Rich Cathode for Lithium Ion Batteries.
    Yang S; Fan Q; Shi Z; Liu L; Liu J; Ke X; Liu J; Hong C; Yang Y; Guo Z
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):36742-36750. PubMed ID: 31532608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A gradient oxy-thiophosphate-coated Ni-rich layered oxide cathode for stable all-solid-state Li-ion batteries.
    Liang J; Zhu Y; Li X; Luo J; Deng S; Zhao Y; Sun Y; Wu D; Hu Y; Li W; Sham TK; Li R; Gu M; Sun X
    Nat Commun; 2023 Jan; 14(1):146. PubMed ID: 36627277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ni-Rich LiNi
    Chen S; He T; Su Y; Lu Y; Bao L; Chen L; Zhang Q; Wang J; Chen R; Wu F
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29732-29743. PubMed ID: 28799739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing the Cycling and Rate Performance of Ni-Rich Cathodes for Lithium-Ion Batteries by Bulk-Phase Engineering and Surface Reconstruction.
    Li Z; Yi H; Li X; Gao P; Zhu Y
    ACS Appl Mater Interfaces; 2024 Jun; 16(22):28537-28549. PubMed ID: 38781051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constructing a High-Energy and Durable Single-Crystal NCM811 Cathode for All-Solid-State Batteries by a Surface Engineering Strategy.
    Liu X; Shi J; Zheng B; Chen Z; Su Y; Zhang M; Xie C; Su M; Yang Y
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41669-41679. PubMed ID: 34432412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.