These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36880560)

  • 21. Li
    Strauss F; Teo JH; Maibach J; Kim AY; Mazilkin A; Janek J; Brezesinski T
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57146-57154. PubMed ID: 33302618
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Argyrodite Solid Electrolyte-Integrated Ni-Rich Oxide Cathode with Enhanced Interfacial Compatibility for All-Solid-State Lithium Batteries.
    Xia Y; Li J; Xiao Z; Zhou X; Zhang J; Huang H; Gan Y; He X; Zhang W
    ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35834669
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tailoring Electrolyte Distributions to Enable High-performance Li
    Wei C; Yu D; Xu X; Wang R; Li J; Lin J; Chen S; Zhang L; Yu C
    Chem Asian J; 2023 Jun; 18(12):e202300304. PubMed ID: 37105938
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microscopic Degradation Mechanism of Argyrodite-Type Sulfide at the Solid Electrolyte-Cathode Interface.
    Morino Y; Tsukasaki H; Mori S
    ACS Appl Mater Interfaces; 2023 May; 15(19):23051-23057. PubMed ID: 37130265
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancing the high rate capability and cycling stability of LiMn₂O₄ by coating of solid-state electrolyte LiNbO₃.
    Zhang ZJ; Chou SL; Gu QF; Liu HK; Li HJ; Ozawa K; Wang JZ
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22155-65. PubMed ID: 25469550
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface-modified and sulfide electrolyte-infiltrated LiNi
    Huang G; Zhong Y; Xia X; Wang X; Gu C; Tu J
    J Colloid Interface Sci; 2023 Feb; 632(Pt A):11-18. PubMed ID: 36403373
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life.
    Yao X; Liu D; Wang C; Long P; Peng G; Hu YS; Li H; Chen L; Xu X
    Nano Lett; 2016 Nov; 16(11):7148-7154. PubMed ID: 27766883
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fundamentals of the Cathode-Electrolyte Interface in All-solid-state Lithium Batteries.
    Jiang Y; Lai A; Ma J; Yu K; Zeng H; Zhang G; Huang W; Wang C; Chi SS; Wang J; Deng Y
    ChemSusChem; 2023 May; 16(9):e202202156. PubMed ID: 36715574
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Li-Rich Layered Sulfide as Cathode Active Materials in All-Solid-State Li-Metal Batteries.
    Marchini F; Saha S; Alves Dalla Corte D; Tarascon JM
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15145-15154. PubMed ID: 32167273
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Degradation Analysis by X-ray Absorption Spectroscopy for LiNbO
    Morino Y; Kanada S
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):2979-2984. PubMed ID: 36622813
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NiCo
    Kim YJ; Rajagopal R; Kang S; Ryu KS
    ACS Omega; 2021 Mar; 6(10):6824-6835. PubMed ID: 33748596
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Understanding the Effect of Atomic-Scale Surface Migration of Bridging Ions in Binding Li
    Wu Y; Ben L; Yu H; Qi W; Zhan Y; Zhao W; Huang X
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):6937-6947. PubMed ID: 30525422
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High Capacity, Superior Cyclic Performances in All-Solid-State Lithium-Ion Batteries Based on 78Li
    Zhang Y; Chen R; Liu T; Shen Y; Lin Y; Nan CW
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28542-28548. PubMed ID: 28776981
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface Modification of the LiFePO
    Tron A; Jo YN; Oh SH; Park YD; Mun J
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12391-12399. PubMed ID: 28322545
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Practical Application of Li-Rich Materials in Halide All-Solid-State Batteries and Interfacial Reactions between Cathodes and Electrolytes.
    Zhang A; Wang J; Yu R; Zhuo H; Wang C; Ren Z; Wang J
    ACS Appl Mater Interfaces; 2023 Feb; 15(6):8190-8199. PubMed ID: 36734587
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stabilizing High-Voltage Cathodes via Ball-Mill Coating with Flame-Made Nanopowder Electrolytes.
    Yu M; Brandt TG; Temeche E; Laine RM
    ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36282634
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MoO
    Wu ZH; Shih JY; Li YJ; Tsai YD; Hung TF; Karuppiah C; Jose R; Yang CC
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159754
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Construction of a hetero-epitaxial nanostructure at the interface of Li-rich cathode materials to boost their rate capability and cycling performances.
    Cao J; Huang H; Qu Y; Tang W; Yang Z; Zhang W
    Nanoscale; 2021 Dec; 13(48):20488-20497. PubMed ID: 34854452
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Will Sulfide Electrolytes be Suitable Candidates for Constructing a Stable Solid/Liquid Electrolyte Interface?
    Fan B; Xu Y; Ma R; Luo Z; Wang F; Zhang X; Ma H; Fan P; Xue B; Han W
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52845-52856. PubMed ID: 33170619
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of surface carbonates on the cyclability of LiNbO
    Kim AY; Strauss F; Bartsch T; Teo JH; Janek J; Brezesinski T
    Sci Rep; 2021 Mar; 11(1):5367. PubMed ID: 33686168
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.