These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 36881233)
1. Diffusion simulation and risk assessment model establishment of chlorine gas leakage based on terrain conditions. Ren XT; Ma XL; Liu JZ; Liu R; Zhao CQ; Wu H; Wang Z; Hai CX; Zhang XD Environ Sci Pollut Res Int; 2023 Apr; 30(19):54742-54752. PubMed ID: 36881233 [TBL] [Abstract][Full Text] [Related]
2. Study on gas diffusion emitted from different height of point source. Yassin MF Environ Monit Assess; 2009 Jan; 148(1-4):379-95. PubMed ID: 18307050 [TBL] [Abstract][Full Text] [Related]
3. Simulation of gaseous pollutant dispersion around an isolated building using the k-ω SST (shear stress transport) turbulence model. Yu H; Thé J J Air Waste Manag Assoc; 2017 May; 67(5):517-536. PubMed ID: 27650217 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of low wind modeling approaches for two tall-stack databases. Paine R; Samani O; Kaplan M; Knipping E; Kumar N J Air Waste Manag Assoc; 2015 Nov; 65(11):1341-53. PubMed ID: 26302223 [TBL] [Abstract][Full Text] [Related]
5. A multiscale modelling methodology applicable for regulatory purposes taking into account effects of complex terrain and buildings on pollutant dispersion: a case study for an inner Alpine basin. Oettl D Environ Sci Pollut Res Int; 2015 Nov; 22(22):17860-75. PubMed ID: 26162440 [TBL] [Abstract][Full Text] [Related]
6. The Jack Rabbit chlorine release experiments: implications of dense gas removal from a depression and downwind concentrations. Hanna S; Britter R; Argenta E; Chang J J Hazard Mater; 2012 Apr; 213-214():406-12. PubMed ID: 22386303 [TBL] [Abstract][Full Text] [Related]
7. Numerical simulation of gas dispersion from rooftop stacks on buildings in urban environments under changes in atmospheric thermal stability. Yassin MF; Alhajeri NS; Elmi AA; Malek MJ; Shalash M Environ Monit Assess; 2021 Jan; 193(1):22. PubMed ID: 33389165 [TBL] [Abstract][Full Text] [Related]
8. [Air quality assessment and health site guidelines for city squares based on RANS method]. Yan L; Hu W; Yin MQ Ying Yong Sheng Tai Xue Bao; 2020 Nov; 31(11):3786-3794. PubMed ID: 33300729 [TBL] [Abstract][Full Text] [Related]
9. Exposure risk and emergency evacuation modeling of toxic gas leakage in urban areas under the influence of multiple meteorological factors. Shao X; Zhao Z; Liu Z; Yang H; Hu C Environ Pollut; 2023 Sep; 333():122044. PubMed ID: 37328122 [TBL] [Abstract][Full Text] [Related]
10. Modelling and simulation of heavy gas dispersion on the basis of modifications in plume path theory. Khan FI; Abbasi SA J Hazard Mater; 2000 Dec; 80(1-3):15-30. PubMed ID: 11080566 [TBL] [Abstract][Full Text] [Related]
11. Numerical modeling on air quality in an urban environment with changes of the aspect ratio and wind direction. Yassin MF Environ Sci Pollut Res Int; 2013 Jun; 20(6):3975-88. PubMed ID: 23192299 [TBL] [Abstract][Full Text] [Related]
12. Assessment of gas dispersion near an operating landfill treated by different intermediate covers with soil alone, low-density polyethylene (LLDPE), or ethylene vinyl alcohol (EVOH) geomembrane. Feng Y; Eun J; Moon S; Nam Y Environ Sci Pollut Res Int; 2023 Jan; 30(4):9672-9687. PubMed ID: 36057707 [TBL] [Abstract][Full Text] [Related]
13. Study on the potential risks under a hazardous gas leakage accident: effects of source characteristics and ambient wind velocities. Liu X; Zhang G; Wu M; Wu Z Environ Sci Pollut Res Int; 2023 Feb; 30(7):17516-17531. PubMed ID: 36195813 [TBL] [Abstract][Full Text] [Related]
14. A method for simulating the release of natural gas from the rupture of high-pressure pipelines in any terrain. Deng Y; Hu H; Yu B; Sun D; Hou L; Liang Y J Hazard Mater; 2018 Jan; 342():418-428. PubMed ID: 28854394 [TBL] [Abstract][Full Text] [Related]
15. Near-source air quality impact of a distributed natural gas combined heat and power facility. Yang B; Gu J; Zhang T; Zhang KM Environ Pollut; 2019 Mar; 246():650-657. PubMed ID: 30611941 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of the Industrial Source Complex Short-Term model: dispersion over terrain. Abdul-Wahab SA J Air Waste Manag Assoc; 2004 Apr; 54(4):396-408. PubMed ID: 15115368 [TBL] [Abstract][Full Text] [Related]
17. Modeling dispersion from toxic gas released after a train collision in Graniteville, SC. Buckley RL; Hunter CH; Addis RP; Parker MJ J Air Waste Manag Assoc; 2007 Mar; 57(3):268-78. PubMed ID: 17385592 [TBL] [Abstract][Full Text] [Related]
18. A three-dimensional model of terrain-induced updrafts for movement ecology studies. Thedin R; Brandes D; Quon E; Sandhu R; Tripp C Mov Ecol; 2024 Mar; 12(1):25. PubMed ID: 38549152 [TBL] [Abstract][Full Text] [Related]
19. Study on the Diffusion Law of Heavy Gas Leakage in Complex Scenarios Based on Scaled-Down Experiments. Zhou ZQ; Zhao WW; Zhang YL; Jiang HL; Zhang L; Chen SY; Liu YZ ACS Omega; 2024 Jul; 9(29):31533-31545. PubMed ID: 39072111 [TBL] [Abstract][Full Text] [Related]
20. CFD simulation of pollutant dispersion around isolated buildings: on the role of convective and turbulent mass fluxes in the prediction accuracy. Gousseau P; Blocken B; van Heijst GJ J Hazard Mater; 2011 Oct; 194():422-34. PubMed ID: 21880420 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]