These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 36881238)
1. Enhanced phosphate adsorption studies on several metal-modified aluminum sludge: preparation optimization, adsorption behavior, and mechanistic insight. Chen A; Guan J; Hu R; Wei X; Zhang Y; Lv L; Wang X; Zhang L; Ji L Environ Sci Pollut Res Int; 2023 Apr; 30(19):54628-54643. PubMed ID: 36881238 [TBL] [Abstract][Full Text] [Related]
2. Construction of 3D network aluminum sludge-based hydrogel beads: combination of macroization, amino functionalization, and resource utilization. Chen A; Wang X; Hu R; Wei X; Lv L; Shen T; Wang J; Xing S; Yuan C Environ Sci Pollut Res Int; 2024 Feb; 31(8):12052-12070. PubMed ID: 38225498 [TBL] [Abstract][Full Text] [Related]
3. Adsorption and recovery of phosphate using sodium carbonate as co-precipitant synthesized La&Zr dual-metal modified material: Adsorption mechanism and practical application. Hu Y; Li Y; Du Y; Zhao B; Chen M; Tian X; Chen S; Fan M; Zhang H Chemosphere; 2024 Sep; 363():142878. PubMed ID: 39032732 [TBL] [Abstract][Full Text] [Related]
4. Removal of coagulant aluminum from water treatment residuals by acid. Okuda T; Nishijima W; Sugimoto M; Saka N; Nakai S; Tanabe K; Ito J; Takenaka K; Okada M Water Res; 2014 Sep; 60():75-81. PubMed ID: 24835954 [TBL] [Abstract][Full Text] [Related]
5. A novel lanthanum-modified copper tailings adsorbent for phosphate removal from water. Jin H; Lin L; Meng X; Wang L; Huang Z; Liu M; Dong L; Hu Y; Crittenden JC Chemosphere; 2021 Oct; 281():130779. PubMed ID: 34015652 [TBL] [Abstract][Full Text] [Related]
6. Efficient removal of nitrogen and phosphorus in aqueous solutions using modified water treatment residuals-sodium alginate beads. Fu G; Zhao Y; Zhou S; Chen C; Zhong Y; Xu Y Environ Sci Pollut Res Int; 2021 Sep; 28(34):46233-46246. PubMed ID: 33635456 [TBL] [Abstract][Full Text] [Related]
7. Achieving win-win outcomes with cerium-loaded porous aluminum sludge hydrogel microspheres for enhanced phosphate removal. Chen A; Lv L; Hu R; Wei X; Guan J; Meng X Sci Total Environ; 2023 Apr; 867():161530. PubMed ID: 36638994 [TBL] [Abstract][Full Text] [Related]
8. Adsorption of phosphate over a novel magnesium-loaded sludge-based biochar. Wang CY; Wang Q; Zhou HD; Fang X; Zeng Q; Zhu G PLoS One; 2024; 19(4):e0301986. PubMed ID: 38626158 [TBL] [Abstract][Full Text] [Related]
9. Enhanced removal of phosphate from aqueous solution using Mg/Fe modified biochar derived from excess activated sludge: removal mechanism and environmental risk. Zhang M; Yang J; Wang H; Lv Q; Xue J Environ Sci Pollut Res Int; 2021 Apr; 28(13):16282-16297. PubMed ID: 33389575 [TBL] [Abstract][Full Text] [Related]
10. Municipal sludge biochar skeletal sodium alginate beads for phosphate removal. He D; Zhang Z; Zhang W; Zhang H; Liu J Int J Biol Macromol; 2024 Mar; 261(Pt 1):129732. PubMed ID: 38280708 [TBL] [Abstract][Full Text] [Related]
11. Metal-based adsorbents for water eutrophication remediation: A review of performances and mechanisms. Liu B; Gai S; Lan Y; Cheng K; Yang F Environ Res; 2022 Sep; 212(Pt B):113353. PubMed ID: 35483409 [TBL] [Abstract][Full Text] [Related]
12. Adsorption of myo-inositol hexakisphosphate in water using recycled water treatment residual. Qiu F; Wang J; Zhao D; Fu K Environ Sci Pollut Res Int; 2018 Oct; 25(29):29593-29604. PubMed ID: 30141166 [TBL] [Abstract][Full Text] [Related]
13. [Adsorption Mechanism for Phosphate in Aqueous Solutions of Calcium/Aluminum-rich Sludge Biochar Composite]. Ouyang Z; Cao L; Wang BQ; Ding L; Huang HM; Zhu CY; Kuang XT Huan Jing Ke Xue; 2023 May; 44(5):2661-2670. PubMed ID: 37177939 [TBL] [Abstract][Full Text] [Related]
14. Phosphate removal and recovery by lanthanum-based adsorbents: A review for current advances. He Q; Zhao H; Teng Z; Wang Y; Li M; Hoffmann MR Chemosphere; 2022 Sep; 303(Pt 1):134987. PubMed ID: 35597457 [TBL] [Abstract][Full Text] [Related]
15. Recovery of phosphate from aqueous solution by dewatered dry sludge biochar and its feasibility in fertilizer use. Liu M; Li R; Wang J; Liu X; Li S; Shen W Sci Total Environ; 2022 Mar; 814():152752. PubMed ID: 34979229 [TBL] [Abstract][Full Text] [Related]
16. Investigation into lanthanum-coated biochar obtained from urban dewatered sewage sludge for enhanced phosphate adsorption. Li J; Li B; Huang H; Zhao N; Zhang M; Cao L Sci Total Environ; 2020 Apr; 714():136839. PubMed ID: 32018980 [TBL] [Abstract][Full Text] [Related]
17. Characterization of aluminium-based water treatment residual for potential phosphorus removal in engineered wetlands. Babatunde AO; Zhao YQ; Burke AM; Morris MA; Hanrahan JP Environ Pollut; 2009 Oct; 157(10):2830-6. PubMed ID: 19427085 [TBL] [Abstract][Full Text] [Related]
18. La-MOFs in situ loaded Al Ai H; Zhang Z; Ji Y; Xu L; Fu ML; Yuan B Environ Sci Pollut Res Int; 2023 Nov; 30(51):110901-110912. PubMed ID: 37796353 [TBL] [Abstract][Full Text] [Related]
19. Phosphate adsorption from sewage sludge filtrate using zinc-aluminum layered double hydroxides. Cheng X; Huang X; Wang X; Zhao B; Chen A; Sun D J Hazard Mater; 2009 Sep; 169(1-3):958-64. PubMed ID: 19443104 [TBL] [Abstract][Full Text] [Related]
20. Efficient reclaiming phosphate from aqueous solution using waste limestone modified sludge biochar: Mechanism and application as soil amendments. Xue J; Wang H; Li P; Zhang M; Yang J; Lv Q Sci Total Environ; 2021 Dec; 799():149454. PubMed ID: 34435587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]