These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36881340)

  • 1. Sub-bandgap near-infrared photovoltaic response in Au/Al
    Dai X; Wu L; Yu L; Yu Z; Ma F; Zhang Y; Yang Y; Sun J; Lu M
    Discov Nano; 2023 Mar; 18(1):33. PubMed ID: 36881340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Silicon Sub-Bandgap Near-Infrared Photodetector with High Detectivity Based on Textured Si/Au Nanoparticle Schottky Junctions Covered with Graphene Film.
    Dai X; Wu L; Liu K; Ma F; Yang Y; Yu L; Sun J; Lu M
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37448033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-infrared detection based on the excitation of hot electrons in Au/Si microcone array.
    Zhang Z; Yan J; You J; Zhu Y; Wang L; Zhong Z; Jiang Z
    Nanotechnology; 2024 Jul; 35(40):. PubMed ID: 38991504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Black silicon Schottky photodetector in sub-bandgap near-infrared regime.
    Hu F; Dai XY; Zhou ZQ; Kong XY; Sun SL; Zhang RJ; Wang SY; Lu M; Sun J
    Opt Express; 2019 Feb; 27(3):3161-3168. PubMed ID: 30732341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon Enhanced Internal Photoemission in Antenna-Spacer-Mirror Based Au/TiO₂ Nanostructures.
    Fang Y; Jiao Y; Xiong K; Ogier R; Yang ZJ; Gao S; Dahlin AB; Käll M
    Nano Lett; 2015 Jun; 15(6):4059-65. PubMed ID: 25938263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection.
    Qi Z; Zhai Y; Wen L; Wang Q; Chen Q; Iqbal S; Chen G; Xu J; Tu Y
    Nanotechnology; 2017 May; 28(27):275202. PubMed ID: 28531089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection.
    Nazirzadeh MA; Atar FB; Turgut BB; Okyay AK
    Sci Rep; 2014 Nov; 4():7103. PubMed ID: 25407509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced photoconversion performance of NdVO
    Chang M; Wang M; Shu M; Zhao Y; Ding B; Huang S; Hou Z; Han G; Lin J
    Acta Biomater; 2019 Nov; 99():295-306. PubMed ID: 31437636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatic effect of Au nanoparticles on near-infrared photoluminescence from Si/SiGe due to nanoscale metal/semiconductor contact.
    Yin Y; Wang Z; Wang S; Bai Y; Jiang Z; Zhong Z
    Nanotechnology; 2017 Apr; 28(15):155203. PubMed ID: 28222043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thin Au surface plasmon waveguide Schottky detectors on p-Si.
    Berini P; Olivieri A; Chen C
    Nanotechnology; 2012 Nov; 23(44):444011. PubMed ID: 23080540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mid-Infrared Response from Cr/n-Si Schottky Junction with an Ultra-Thin Cr Metal.
    Su ZC; Li YH; Lin CF
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-thin Ag/Si heterojunction hot-carrier photovoltaic conversion Schottky devices for harvesting solar energy at wavelength above 1.1 µm.
    Su ZC; Chang CH; Jhou JC; Lin HT; Lin CF
    Sci Rep; 2023 Apr; 13(1):5388. PubMed ID: 37012262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface plasmon assisted hot electron collection in wafer-scale metallic-semiconductor photonic crystals.
    Chou JB; Li XH; Wang Y; Fenning DP; Elfaer A; Viegas J; Jouiad M; Shao-Horn Y; Kim SG
    Opt Express; 2016 Sep; 24(18):A1234-44. PubMed ID: 27607726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced photoelectrocatalytic performance of α-Fe2O3 thin films by surface plasmon resonance of Au nanoparticles coupled with surface passivation by atom layer deposition of Al2O3.
    Liu Y; Xu Z; Yin M; Fan H; Cheng W; Lu L; Song Y; Ma J; Zhu X
    Nanoscale Res Lett; 2015 Dec; 10(1):374. PubMed ID: 26415539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Al
    McVay E; Zubair A; Lin Y; Nourbakhsh A; Palacios T
    ACS Appl Mater Interfaces; 2020 Dec; 12(52):57987-57995. PubMed ID: 33320539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual functionality of surface plasmon resonance and barrier layer on the photosensing and optical nonlinearity of ZnO nanorod arrays.
    Farokhipour A; Rahmati A; Khanzadeh M
    Phys Chem Chem Phys; 2022 Sep; 24(37):22928-22938. PubMed ID: 36125108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon-enhanced parabolic nanostructures for broadband absorption in ultra-thin crystalline Si solar cells.
    Pritom YA; Sikder DK; Zaman S; Hossain M
    Nanoscale Adv; 2023 Sep; 5(18):4986-4995. PubMed ID: 37705791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extending the Photovoltaic Response of Perovskite Solar Cells into the Near-Infrared with a Narrow-Bandgap Organic Semiconductor.
    Zhao X; Yao C; Liu T; Hamill JC; Ngongang Ndjawa GO; Cheng G; Yao N; Meng H; Loo YL
    Adv Mater; 2019 Dec; 31(49):e1904494. PubMed ID: 31523862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Demonstration of SWIR Silicon-Based Photodetection by Using Thin ITO/Au/Au Nanoparticles/n-Si Structure.
    Li X; Deng Z; Ma Z; Jiang Y; Du C; Jia H; Wang W; Chen H
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progressive Design of Plasmonic Metal-Semiconductor Ensemble toward Regulated Charge Flow and Improved Vis-NIR-Driven Solar-to-Chemical Conversion.
    Han C; Quan Q; Chen HM; Sun Y; Xu YJ
    Small; 2017 Apr; 13(14):. PubMed ID: 28151576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.