These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 3688186)

  • 1. Origins and implications of frequency-doubling in the visual evoked potential.
    Previc FH
    Am J Optom Physiol Opt; 1987 Sep; 64(9):664-73. PubMed ID: 3688186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual evoked potentials to luminance and chromatic contrast in rhesus monkeys.
    Previc FH
    Vision Res; 1986; 26(12):1897-907. PubMed ID: 3617531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical contrast gain control in human spatial vision.
    Bobak P; Bodis-Wollner I; Marx MS
    J Physiol; 1988 Nov; 405():421-37. PubMed ID: 3255797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retinal and cortical evoked responses to chromatic contrast stimuli. Specific losses in both eyes of patients with multiple sclerosis and unilateral optic neuritis.
    Porciatti V; Sartucci F
    Brain; 1996 Jun; 119 ( Pt 3)():723-40. PubMed ID: 8673486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual evoked potentials for red-green gratings reversing at different temporal frequencies: asymmetries with respect to isoluminance.
    Rudvin I; Valberg A
    Vis Neurosci; 2005; 22(6):735-47. PubMed ID: 16469184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of the temporal properties of visual evoked potentials to luminance and colour contrast in infants.
    Morrone MC; Fiorentini A; Burr DC
    Vision Res; 1996 Oct; 36(19):3141-55. PubMed ID: 8917775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binocularity in the little owl, Athene noctua. II. Properties of visually evoked potentials from the Wulst in response to monocular and binocular stimulation with sine wave gratings.
    Porciatti V; Fontanesi G; Raffaelli A; Bagnoli P
    Brain Behav Evol; 1990; 35(1):40-8. PubMed ID: 2340414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial structure of chromatically opponent receptive fields in the human visual system.
    Girard P; Morrone MC
    Vis Neurosci; 1995; 12(1):103-16. PubMed ID: 7718492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of spatial frequency on simultaneous recorded steady-state pattern electroretinograms and visual evoked potentials.
    Tomoda H; Celesia GG; Toleikis SC
    Electroencephalogr Clin Neurophysiol; 1991; 80(2):81-8. PubMed ID: 1707808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplitude and phase variations of harmonic components in human achromatic and chromatic visual evoked potentials.
    McKeefry DJ; Russell MH; Murray IJ; Kulikowski JJ
    Vis Neurosci; 1996; 13(4):639-53. PubMed ID: 8870222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual evoked potentials and magnocellular and parvocellular segregation.
    Rudvin I; Valberg A; Kilavik BE
    Vis Neurosci; 2000; 17(4):579-90. PubMed ID: 11016577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Color discrimination ellipses of trichromats measured with transient and steady state visual evoked potentials.
    Gomes BD; Souza GS; Lima MG; Rodrigues AR; Saito CA; da Silva Filho M; Silveira LC
    Vis Neurosci; 2008; 25(3):333-9. PubMed ID: 18598404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal response characteristics of the spatiochromatic visual evoked potential: nonlinearities and departures from psychophysics.
    Crognale MA; Switkes E; Adams AJ
    J Opt Soc Am A Opt Image Sci Vis; 1997 Oct; 14(10):2595-607. PubMed ID: 9316274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parvocellular and magnocellular contributions to the initial generators of the visual evoked potential: high-density electrical mapping of the "C1" component.
    Foxe JJ; Strugstad EC; Sehatpour P; Molholm S; Pasieka W; Schroeder CE; McCourt ME
    Brain Topogr; 2008 Sep; 21(1):11-21. PubMed ID: 18784997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infant temporal contrast sensitivity functions (tCSFs) mature earlier for luminance than for chromatic stimuli: evidence for precocious magnocellular development?
    Dobkins KR; Anderson CM; Lia B
    Vision Res; 1999 Sep; 39(19):3223-39. PubMed ID: 10615492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual evoked potentials for reversals of red-green gratings with different chromatic contrasts: asymmetries with respect to isoluminance.
    Rudvin I
    Vis Neurosci; 2005; 22(6):749-58. PubMed ID: 16469185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contrast response properties of magnocellular and parvocellular pathways in retinitis pigmentosa assessed by the visual evoked potential.
    Alexander KR; Rajagopalan AS; Seiple W; Zemon VM; Fishman GA
    Invest Ophthalmol Vis Sci; 2005 Aug; 46(8):2967-73. PubMed ID: 16043873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of chromatic and luminance detection contours using the sweep VEP.
    Kelly JP; Chang S
    Vision Res; 2000; 40(14):1887-905. PubMed ID: 10837833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of luminance on visual evoked potential amplitudes in normal and disabled readers.
    Brannan JR; Solan HA; Ficarra AP; Ong E
    Optom Vis Sci; 1998 Apr; 75(4):279-83. PubMed ID: 9586753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parvocellular and magnocellular contributions to visual evoked potentials in humans: stimulation with chromatic and achromatic gratings and apparent motion.
    Tobimatsu S; Tomoda H; Kato M
    J Neurol Sci; 1995 Dec; 134(1-2):73-82. PubMed ID: 8747847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.