These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 3688213)
1. Interactions of NIP-taurine, NAP-taurine, and Cl- with the human erythrocyte anion exchange system. Knauf PA; Mann NA; Kalwas JE; Spinelli LJ; Ramjeesingh M Am J Physiol; 1987 Nov; 253(5 Pt 1):C652-61. PubMed ID: 3688213 [TBL] [Abstract][Full Text] [Related]
2. NIP- and NAP-taurine bind to external modifier site of AE1 (band 3), at which iodide inhibits anion exchange. Knauf PA; Spinelli LJ Am J Physiol; 1995 Aug; 269(2 Pt 1):C410-6. PubMed ID: 7653523 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of anion exchange across the red cell membrane by band 3: interactions between stilbenedisulfonate and NAP-taurine binding sites. Macara IG; Cantley LC Biochemistry; 1981 Sep; 20(20):5695-701. PubMed ID: 7295699 [TBL] [Abstract][Full Text] [Related]
4. Asymmetry of the red cell anion exchange system. Different mechanisms of reversible inhibition by N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate (NAP-taurine) at the inside and outside of the membrane. Knauf PA; Ship S; Breuer W; McCulloch L; Rothstein A J Gen Physiol; 1978 Nov; 72(5):607-30. PubMed ID: 739255 [TBL] [Abstract][Full Text] [Related]
5. Effects of the transport site conformation on the binding of external NAP-taurine to the human erythrocyte anion exchange system. Evidence for intrinsic asymmetry. Knauf PA; Law FY; Tarshis T; Furuya W J Gen Physiol; 1984 May; 83(5):683-701. PubMed ID: 6736916 [TBL] [Abstract][Full Text] [Related]
6. N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate (NAP-taurine) as a photoaffinity probe for identifying membrane components containing the modifier site of the human red blood cell anion exchange system. Knauf PA; Breuer W; McCulloch L; Rothstein A J Gen Physiol; 1978 Nov; 72(5):631-49. PubMed ID: 739256 [TBL] [Abstract][Full Text] [Related]
7. Interactions of inhibitors on anion transporter of human erythrocyte. Fröhlich O; Gunn RB Am J Physiol; 1987 Feb; 252(2 Pt 1):C153-62. PubMed ID: 3826335 [TBL] [Abstract][Full Text] [Related]
8. Substrate-dependent reversal of anion transport site orientation in the human red blood cell anion-exchange protein, AE1. Knauf PA; Law FY; Leung TW; Gehret AU; Perez ML Proc Natl Acad Sci U S A; 2002 Aug; 99(16):10861-4. PubMed ID: 12149479 [TBL] [Abstract][Full Text] [Related]
9. Eosin-5-maleimide inhibits red cell Cl- exchange at a noncompetitive site that senses band 3 conformation. Knauf PA; Strong NM; Penikas J; Wheeler RB; Liu SQ Am J Physiol; 1993 May; 264(5 Pt 1):C1144-54. PubMed ID: 7684558 [TBL] [Abstract][Full Text] [Related]
10. Flufenamic acid senses conformation and asymmetry of human erythrocyte band 3 anion transport protein. Knauf PA; Spinelli LJ; Mann NA Am J Physiol; 1989 Aug; 257(2 Pt 1):C277-89. PubMed ID: 2764091 [TBL] [Abstract][Full Text] [Related]
11. Transmembrane effects of irreversible inhibitors of anion transport in red blood cells. Evidence for mobile transport sites. Grinstein S; McCulloch L; Rothstein A J Gen Physiol; 1979 Apr; 73(4):493-514. PubMed ID: 448327 [TBL] [Abstract][Full Text] [Related]
12. Source of transport site asymmetry in the band 3 anion exchange protein determined by NMR measurements of external Cl- affinity. Liu D; Kennedy SD; Knauf PA Biochemistry; 1996 Dec; 35(48):15228-35. PubMed ID: 8952471 [TBL] [Abstract][Full Text] [Related]
13. Proton inhibition of chloride exchange: asynchrony of band 3 proton and anion transport sites? Milanick MA; Gunn RB Am J Physiol; 1986 Jun; 250(6 Pt 1):C955-69. PubMed ID: 3013020 [TBL] [Abstract][Full Text] [Related]
14. The interaction of an anionic photoreactive probe with the anion transport system of the human red blood cell. Cabantchik ZI; Knauf PA; Ostwald T; Markus H; Davidson L; Breuer W; Rothstein A Biochim Biophys Acta; 1976 Dec; 455(2):526-37. PubMed ID: 999926 [TBL] [Abstract][Full Text] [Related]
15. Lys-430, site of irreversible inhibition of band 3 Cl- flux by eosin-5-maleimide, is not at the transport site. Liu SQ; Knauf PA Am J Physiol; 1993 May; 264(5 Pt 1):C1155-64. PubMed ID: 7684559 [TBL] [Abstract][Full Text] [Related]
16. Evidence for a second binding/transport site for chloride in erythrocyte anion transporter AE1 modified at glutamate 681. Jennings ML Biophys J; 2005 Apr; 88(4):2681-91. PubMed ID: 15653731 [TBL] [Abstract][Full Text] [Related]
17. Anion-selectivity of the swelling-activated osmolyte channel in eel erythrocytes. Lewis RA; Bursell JD; Kirk K J Membr Biol; 1996 Jan; 149(2):103-11. PubMed ID: 8834117 [TBL] [Abstract][Full Text] [Related]
18. The mechanism of anion transport across human red blood cell membranes as revealed with a fluorescent substrate: II. Kinetic properties of NBD-taurine transfer in asymmetric conditions. Eidelman O; Cabantchik ZI J Membr Biol; 1983; 71(1-2):149-61. PubMed ID: 6834420 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of erythrocyte anion exchange by tolrestat, an inhibitor of aldose reductase. Gunn RB; Gunn HB Metabolism; 1989 Aug; 38(8):801-4. PubMed ID: 2503683 [TBL] [Abstract][Full Text] [Related]
20. Persistence of external chloride and DIDS binding after chemical modification of Glu-681 in human band 3. Bahar S; Gunter CT; Wu C; Kennedy SD; Knauf PA Am J Physiol; 1999 Oct; 277(4):C791-9. PubMed ID: 10516109 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]