These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 3688233)
1. Passive, one-dimensional countercurrent models do not simulate hypertonic urine formation. Wexler AS; Kalaba RE; Marsh DJ Am J Physiol; 1987 Nov; 253(5 Pt 2):F1020-30. PubMed ID: 3688233 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional anatomy and renal concentrating mechanism. I. Modeling results. Wexler AS; Kalaba RE; Marsh DJ Am J Physiol; 1991 Mar; 260(3 Pt 2):F368-83. PubMed ID: 2000954 [TBL] [Abstract][Full Text] [Related]
3. A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. II. Parameter sensitivity and tubular inhomogeneity. Layton AT; Layton HE Am J Physiol Renal Physiol; 2005 Dec; 289(6):F1367-81. PubMed ID: 15914775 [TBL] [Abstract][Full Text] [Related]
4. A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. I. Formulation and base-case results. Layton AT; Layton HE Am J Physiol Renal Physiol; 2005 Dec; 289(6):F1346-66. PubMed ID: 15914776 [TBL] [Abstract][Full Text] [Related]
5. Urine concentrating mechanism in the inner medulla of the mammalian kidney: role of three-dimensional architecture. Dantzler WH; Pannabecker TL; Layton AT; Layton HE Acta Physiol (Oxf); 2011 Jul; 202(3):361-78. PubMed ID: 21054810 [TBL] [Abstract][Full Text] [Related]
7. A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results. Layton AT Am J Physiol Renal Physiol; 2011 Feb; 300(2):F356-71. PubMed ID: 21068086 [TBL] [Abstract][Full Text] [Related]
8. Role of inner medullary collecting duct NaCl transport in urinary concentration. Chandhoke PS; Saidel GM; Knepper MA Am J Physiol; 1985 Nov; 249(5 Pt 2):F688-97. PubMed ID: 4061655 [TBL] [Abstract][Full Text] [Related]
9. Countercurrent multiplication may not explain the axial osmolality gradient in the outer medulla of the rat kidney. Layton AT; Layton HE Am J Physiol Renal Physiol; 2011 Nov; 301(5):F1047-56. PubMed ID: 21753076 [TBL] [Abstract][Full Text] [Related]
10. A mathematical model of the urine concentrating mechanism in the rat renal medulla. II. Functional implications of three-dimensional architecture. Layton AT Am J Physiol Renal Physiol; 2011 Feb; 300(2):F372-84. PubMed ID: 21068088 [TBL] [Abstract][Full Text] [Related]
11. Functional implications of the three-dimensional architecture of the rat renal inner medulla. Layton AT; Pannabecker TL; Dantzler WH; Layton HE Am J Physiol Renal Physiol; 2010 Apr; 298(4):F973-87. PubMed ID: 20053796 [TBL] [Abstract][Full Text] [Related]
12. Role of three-dimensional architecture in the urine concentrating mechanism of the rat renal inner medulla. Pannabecker TL; Dantzler WH; Layton HE; Layton AT Am J Physiol Renal Physiol; 2008 Nov; 295(5):F1271-85. PubMed ID: 18495796 [TBL] [Abstract][Full Text] [Related]
13. Effect of varying salt and urea permeabilities along descending limbs of Henle in a model of the renal medullary urine concentrating mechanism. Thomas SR Bull Math Biol; 1991; 53(6):825-43. PubMed ID: 1958893 [TBL] [Abstract][Full Text] [Related]
14. Urine-concentrating mechanism in the inner medulla: function of the thin limbs of the loops of Henle. Dantzler WH; Layton AT; Layton HE; Pannabecker TL Clin J Am Soc Nephrol; 2014 Oct; 9(10):1781-9. PubMed ID: 23908457 [TBL] [Abstract][Full Text] [Related]
15. Maximum urine concentrating capability in a mathematical model of the inner medulla of the rat kidney. Marcano M; Layton AT; Layton HE Bull Math Biol; 2010 Feb; 72(2):314-39. PubMed ID: 19915926 [TBL] [Abstract][Full Text] [Related]
16. Simulation of the profile of water, NaCl, and urea transport in the countercurrent multiplication system between thin ascending limb and inner medullary collecting duct. Hamada Y; Imai M; Aoki T; Suzuki R; Kamiya A Tohoku J Exp Med; 1992 Sep; 168(1):47-62. PubMed ID: 1488758 [TBL] [Abstract][Full Text] [Related]
17. Renal medullary concentrating process: an integrative hypothesis. Bonventre JV; Lechene C Am J Physiol; 1980 Dec; 239(6):F578-88. PubMed ID: 7446733 [TBL] [Abstract][Full Text] [Related]
18. Impact of renal medullary three-dimensional architecture on oxygen transport. Fry BC; Edwards A; Sgouralis I; Layton AT Am J Physiol Renal Physiol; 2014 Aug; 307(3):F263-72. PubMed ID: 24899054 [TBL] [Abstract][Full Text] [Related]
19. Urine concentrating mechanism: impact of vascular and tubular architecture and a proposed descending limb urea-Na+ cotransporter. Layton AT; Dantzler WH; Pannabecker TL Am J Physiol Renal Physiol; 2012 Mar; 302(5):F591-605. PubMed ID: 22088433 [TBL] [Abstract][Full Text] [Related]
20. Interstitial water and solute recovery by inner medullary vasa recta. Edwards A; Delong MJ; Pallone TL Am J Physiol Renal Physiol; 2000 Feb; 278(2):F257-69. PubMed ID: 10662730 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]