BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36882374)

  • 41. Novel 1,2-cis-stereoselective glycosylations utilizing organoboron reagents and their application to natural products and complex oligosaccharide synthesis.
    Takahashi D; Tanaka M; Nishi N; Toshima K
    Carbohydr Res; 2017 Nov; 452():64-77. PubMed ID: 29080430
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Aryl(trifluoroethyl)iodonium Triflimide and Nitrile Solvent Systems: A Combination for the Stereoselective Synthesis of Armed 1,2-trans-β-Glycosides at Noncryogenic Temperatures.
    Chu AH; Minciunescu A; Bennett CS
    Org Lett; 2015 Dec; 17(24):6262-5. PubMed ID: 26634960
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development of Slowly Digestible Starch Derived α-Glucans with 4,6-α-Glucanotransferase and Branching Sucrase Enzymes.
    Te Poele EM; Corwin SG; Hamaker BR; Lamothe LM; Vafiadi C; Dijkhuizen L
    J Agric Food Chem; 2020 Jun; 68(24):6664-6671. PubMed ID: 32437608
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The α-Glycosidation of Partially Unprotected N-Acetyl and N-Glycolyl Sialyl Donors in the Absence of a Nitrile Solvent Effect.
    Aoyagi T; Ohira S; Fuse S; Uzawa J; Yamaguchi Y; Tanaka H
    Chemistry; 2016 May; 22(20):6968-73. PubMed ID: 27060996
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Palladium(II)-catalyzed rearrangement of glycal trichloroacetimidates: application to the stereoselective synthesis of glycosyl ureas.
    Mercer GJ; Yang J; McKay MJ; Nguyen HM
    J Am Chem Soc; 2008 Aug; 130(33):11210-8. PubMed ID: 18642810
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of Elusive Reaction Intermediates Using Infrared Ion Spectroscopy: Application to the Experimental Characterization of Glycosyl Cations.
    Braak FT; Elferink H; Houthuijs KJ; Oomens J; Martens J; Boltje TJ
    Acc Chem Res; 2022 Jun; 55(12):1669-1679. PubMed ID: 35616920
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 1-Picolinyl-5-azido Thiosialosides: Versatile Donors for the Stereoselective Construction of Sialyl Linkages.
    Chen J; Hansen T; Zhang QJ; Liu DY; Sun Y; Yan H; Codée JDC; Schmidt RR; Sun JS
    Angew Chem Int Ed Engl; 2019 Nov; 58(47):17000-17008. PubMed ID: 31532864
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stereoselective β-mannosylations and β-rhamnosylations from glycosyl hemiacetals mediated by lithium iodide.
    Pongener I; Pepe DA; Ruddy JJ; McGarrigle EM
    Chem Sci; 2021 Jul; 12(29):10070-10075. PubMed ID: 34377400
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Conformationally armed 3,6-tethered glycosyl donors: synthesis, conformation, reactivity, and selectivity.
    Heuckendorff M; Pedersen CM; Bols M
    J Org Chem; 2013 Jul; 78(14):7234-48. PubMed ID: 23786671
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 1,2-cis-α-Stereoselective Glycosylation Utilizing a Glycosyl-Acceptor-Derived Borinic Ester and Its Application to the Total Synthesis of Natural Glycosphingolipids.
    Tanaka M; Takahashi D; Toshima K
    Org Lett; 2016 Oct; 18(19):5030-5033. PubMed ID: 27626302
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Diboron-Catalyzed Regio- and 1,2-
    Tomita S; Tanaka M; Inoue M; Inaba K; Takahashi D; Toshima K
    J Org Chem; 2020 Dec; 85(24):16254-16262. PubMed ID: 33052679
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mapping the Relationship between Glycosyl Acceptor Reactivity and Glycosylation Stereoselectivity.
    van der Vorm S; van Hengst JMA; Bakker M; Overkleeft HS; van der Marel GA; Codée JDC
    Angew Chem Int Ed Engl; 2018 Jul; 57(27):8240-8244. PubMed ID: 29603532
    [TBL] [Abstract][Full Text] [Related]  

  • 53. S-Benzoxazolyl (SBox) glycosides as novel, versatile glycosyl donors for stereoselective 1,2-cis glycosylation.
    Demchenko AV; Malysheva NN; De Meo C
    Org Lett; 2003 Feb; 5(4):455-8. PubMed ID: 12583742
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Highly stereoselective β-mannopyranosylation via the 1-α-glycosyloxy-isochromenylium-4-gold(I) intermediates.
    Zhu Y; Yu B
    Chemistry; 2015 Jun; 21(24):8771-80. PubMed ID: 25899008
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Glycosylation with 2-Acetamido-2-deoxyglycosyl Donors at a Low Temperature: Scope of the Non-Oxazoline Method.
    Arihara R; Kakita K; Suzuki N; Nakamura S; Hashimoto S
    J Org Chem; 2015 May; 80(9):4259-77. PubMed ID: 25807142
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthesis of the tetrasaccharide repeating unit of the
    Gucchait A; Shit P; Misra AK
    Beilstein J Org Chem; 2020; 16():1700-1705. PubMed ID: 32733613
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Solvent-Dependent Mechanism and Stereochemistry of Mitsunobu Glycosylation with Unprotected Pyranoses.
    Takeuchi H; Fujimori Y; Ueda Y; Shibayama H; Nagaishi M; Yoshimura T; Sasamori T; Tokitoh N; Furuta T; Kawabata T
    Org Lett; 2020 Jun; 22(12):4754-4759. PubMed ID: 32496806
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tris(pentafluorophenyl)borane-Promoted Stereoselective Glycosylation with Glycosyl Trichloroacetimidates under Mild Conditions.
    Mishra KB; Singh AK; Kandasamy J
    J Org Chem; 2018 Apr; 83(7):4204-4212. PubMed ID: 29536731
    [TBL] [Abstract][Full Text] [Related]  

  • 59. α-Selective Glycosylation with β-Glycosyl Sulfonium Ions Prepared via Intramolecular Alkylation.
    Moons SJ; Mensink RA; Bruekers JPJ; Vercammen MLA; Jansen LM; Boltje TJ
    J Org Chem; 2019 Apr; 84(7):4486-4500. PubMed ID: 30808170
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A transglycosylating 1,3(4)-beta-glucanase from rhodothermus marinus NMR analysis of enzyme reactions.
    Petersen BO; Krah M; Duus JO; Thomsen KK
    Eur J Biochem; 2000 Jan; 267(2):361-9. PubMed ID: 10632706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.