These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36882621)

  • 1. Understudied proteins and understudied functions in the model bacterium Bacillus subtilis-A major challenge in current research.
    Wicke D; Meißner J; Warneke R; Elfmann C; Stülke J
    Mol Microbiol; 2023 Jul; 120(1):8-19. PubMed ID: 36882621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of asparagine homeostasis in
    Meißner J; Königshof M; Wrede K; Warneke R; Mardoukhi MSY; Commichau FM; Stülke J
    J Bacteriol; 2024 Feb; 206(2):e0042023. PubMed ID: 38193659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DEAD-Box RNA helicases in Bacillus subtilis have multiple functions and act independently from each other.
    Lehnik-Habrink M; Rempeters L; Kovács ÁT; Wrede C; Baierlein C; Krebber H; Kuipers OP; Stülke J
    J Bacteriol; 2013 Feb; 195(3):534-44. PubMed ID: 23175651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. YbxF, a protein associated with exponential-phase ribosomes in Bacillus subtilis.
    Sojka L; Fucík V; Krásný L; Barvík I; Jonák J
    J Bacteriol; 2007 Jul; 189(13):4809-14. PubMed ID: 17468242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards an elucidation of the roles of the ribosome during different growth phases in Bacillus subtilis.
    Nanamiya H; Kawamura F
    Biosci Biotechnol Biochem; 2010; 74(3):451-61. PubMed ID: 20208344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation of
    Gundlach J; Herzberg C; Hertel D; Thürmer A; Daniel R; Link H; Stülke J
    mBio; 2017 Jul; 8(4):. PubMed ID: 28679749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Release factor-dependent ribosome rescue by BrfA in the Gram-positive bacterium Bacillus subtilis.
    Shimokawa-Chiba N; Müller C; Fujiwara K; Beckert B; Ito K; Wilson DN; Chiba S
    Nat Commun; 2019 Nov; 10(1):5397. PubMed ID: 31776341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of three-carbon amino acid homeostasis by promiscuous importers and exporters in
    Warneke R; Herzberg C; Daniel R; Hormes B; Stülke J
    mBio; 2024 Apr; 15(4):e0345623. PubMed ID: 38470260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron Homeostasis in Bacillus subtilis Requires Siderophore Production and Biofilm Formation.
    Rizzi A; Roy S; Bellenger JP; Beauregard PB
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30446551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of Ribosomal Protein S14 Demonstrated by the Reconstruction of Chimeric Ribosomes in Bacillus subtilis.
    Akanuma G; Kawamura F; Watanabe S; Watanabe M; Okawa F; Natori Y; Nanamiya H; Asai K; Chibazakura T; Yoshikawa H; Soma A; Hishida T; Kato-Yamada Y
    J Bacteriol; 2021 Apr; 203(10):. PubMed ID: 33649148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond.
    Cui W; Han L; Suo F; Liu Z; Zhou L; Zhou Z
    World J Microbiol Biotechnol; 2018 Sep; 34(10):145. PubMed ID: 30203131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ribosome Dimerization Protects the Small Subunit.
    Feaga HA; Kopylov M; Kim JK; Jovanovic M; Dworkin J
    J Bacteriol; 2020 Apr; 202(10):. PubMed ID: 32123037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of network topological units coordinating the global expression response to glucose in Bacillus subtilis and its comparison to Escherichia coli.
    Vázquez CD; Freyre-González JA; Gosset G; Loza JA; Gutiérrez-Ríos RM
    BMC Microbiol; 2009 Aug; 9():176. PubMed ID: 19703276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the Amino Acid Residue Requirements of the RNA Polymerase (RNAP) α Subunit C-Terminal Domain for Productive Interaction between Spx and RNAP of Bacillus subtilis.
    Birch CA; Davis MJ; Mbengi L; Zuber P
    J Bacteriol; 2017 Jul; 199(14):. PubMed ID: 28484046
    [No Abstract]   [Full Text] [Related]  

  • 15. The essential GTPase YqeH is required for proper ribosome assembly in Bacillus subtilis.
    Uicker WC; Schaefer L; Koenigsknecht M; Britton RA
    J Bacteriol; 2007 Apr; 189(7):2926-9. PubMed ID: 17237168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis.
    Macek B; Mijakovic I; Olsen JV; Gnad F; Kumar C; Jensen PR; Mann M
    Mol Cell Proteomics; 2007 Apr; 6(4):697-707. PubMed ID: 17218307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional implementation of the posttranslational SecB-SecA protein-targeting pathway in Bacillus subtilis.
    Diao L; Dong Q; Xu Z; Yang S; Zhou J; Freudl R
    Appl Environ Microbiol; 2012 Feb; 78(3):651-9. PubMed ID: 22113913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of the requirements for magnesium transporters in Bacillus subtilis.
    Wakeman CA; Goodson JR; Zacharia VM; Winkler WC
    J Bacteriol; 2014 Mar; 196(6):1206-14. PubMed ID: 24415722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A proteomic view of cell physiology of Bacillus subtilis--bringing the genome sequence to life.
    Hecker M
    Adv Biochem Eng Biotechnol; 2003; 83():57-92. PubMed ID: 12934926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CsrA of Bacillus subtilis regulates translation initiation of the gene encoding the flagellin protein (hag) by blocking ribosome binding.
    Yakhnin H; Pandit P; Petty TJ; Baker CS; Romeo T; Babitzke P
    Mol Microbiol; 2007 Jun; 64(6):1605-20. PubMed ID: 17555441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.