These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36882621)

  • 41. The Conserved DNA Binding Protein WhiA Influences Chromosome Segregation in Bacillus subtilis.
    Bohorquez LC; Surdova K; Jonker MJ; Hamoen LW
    J Bacteriol; 2018 Apr; 200(8):. PubMed ID: 29378890
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Discovery of 20 novel ribosomal leader candidates in bacteria and archaea.
    Eckert I; Weinberg Z
    BMC Microbiol; 2020 May; 20(1):130. PubMed ID: 32448158
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improving Protein Production on the Level of Regulation of both Expression and Secretion Pathways in Bacillus subtilis.
    Song Y; Nikoloff JM; Zhang D
    J Microbiol Biotechnol; 2015 Jul; 25(7):963-77. PubMed ID: 25737123
    [TBL] [Abstract][Full Text] [Related]  

  • 44. DciA Helicase Operators Exhibit Diversity across Bacterial Phyla.
    Blaine HC; Burke JT; Ravi J; Stallings CL
    J Bacteriol; 2022 Aug; 204(8):e0016322. PubMed ID: 35880876
    [TBL] [Abstract][Full Text] [Related]  

  • 45. BSGatlas: a unified
    Geissler AS; Anthon C; Alkan F; González-Tortuero E; Poulsen LD; Kallehauge TB; Breüner A; Seemann SE; Vinther J; Gorodkin J
    Microb Genom; 2021 Feb; 7(2):. PubMed ID: 33539279
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis.
    Takami H; Nakasone K; Takaki Y; Maeno G; Sasaki R; Masui N; Fuji F; Hirama C; Nakamura Y; Ogasawara N; Kuhara S; Horikoshi K
    Nucleic Acids Res; 2000 Nov; 28(21):4317-31. PubMed ID: 11058132
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genetic dissection of specificity determinants in the interaction of HPr with enzymes II of the bacterial phosphoenolpyruvate:sugar phosphotransferase system in Escherichia coli.
    Reichenbach B; Breustedt DA; Stülke J; Rak B; Görke B
    J Bacteriol; 2007 Jul; 189(13):4603-13. PubMed ID: 17449611
    [TBL] [Abstract][Full Text] [Related]  

  • 48. SecDF of Bacillus subtilis, a molecular Siamese twin required for the efficient secretion of proteins.
    Bolhuis A; Broekhuizen CP; Sorokin A; van Roosmalen ML; Venema G; Bron S; Quax WJ; van Dijl JM
    J Biol Chem; 1998 Aug; 273(33):21217-24. PubMed ID: 9694879
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genetic competence in Bacillus subtilis.
    Dubnau D
    Microbiol Rev; 1991 Sep; 55(3):395-424. PubMed ID: 1943994
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Translational block to expression of the Escherichia coli Tn9-derived chloramphenicol-resistance gene in Bacillus subtilis.
    Goldfarb DS; Rodriguez RL; Doi RH
    Proc Natl Acad Sci U S A; 1982 Oct; 79(19):5886-90. PubMed ID: 6310552
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dynamic Membrane Localization of RNase Y in Bacillus subtilis.
    Hamouche L; Billaudeau C; Rocca A; Chastanet A; Ngo S; Laalami S; Putzer H
    mBio; 2020 Feb; 11(1):. PubMed ID: 32071272
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In Bacillus subtilis, the SatA (Formerly YyaR) Acetyltransferase Detoxifies Streptothricin via Lysine Acetylation.
    Burckhardt RM; Escalante-Semerena JC
    Appl Environ Microbiol; 2017 Nov; 83(21):. PubMed ID: 28842538
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Global landscape of lysine acylomes in Bacillus subtilis.
    Zhang M; Liu T; Wang L; Huang Y; Fan R; Ma K; Kan Y; Tan M; Xu JY
    J Proteomics; 2023 Jan; 271():104767. PubMed ID: 36336260
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The acetylproteome of Gram-positive model bacterium Bacillus subtilis.
    Kim D; Yu BJ; Kim JA; Lee YJ; Choi SG; Kang S; Pan JG
    Proteomics; 2013 May; 13(10-11):1726-36. PubMed ID: 23468065
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regulation of the tryptophan biosynthetic genes in Bacillus halodurans: common elements but different strategies than those used by Bacillus subtilis.
    Szigeti R; Milescu M; Gollnick P
    J Bacteriol; 2004 Feb; 186(3):818-28. PubMed ID: 14729709
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Virus evolution toward limited dependence on nonessential functions of the host: the case of bacteriophage SPP1.
    Cvirkaite-Krupovic V; Carballido-López R; Tavares P
    J Virol; 2015 Mar; 89(5):2875-83. PubMed ID: 25540376
    [TBL] [Abstract][Full Text] [Related]  

  • 57. σ
    Ramaniuk O; Převorovský M; Pospíšil J; Vítovská D; Kofroňová O; Benada O; Schwarz M; Šanderová H; Hnilicová J; Krásný L
    J Bacteriol; 2018 Sep; 200(17):. PubMed ID: 29914988
    [TBL] [Abstract][Full Text] [Related]  

  • 58. General and regulatory proteolysis in Bacillus subtilis.
    Molière N; Turgay K
    Subcell Biochem; 2013; 66():73-103. PubMed ID: 23479438
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular Biology of Bacillus subtilis Cytochromes anno 2020.
    Hederstedt L
    Biochemistry (Mosc); 2021 Jan; 86(1):8-21. PubMed ID: 33705278
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Release factor-dependent ribosome rescue by BrfA in the Gram-positive bacterium Bacillus subtilis.
    Shimokawa-Chiba N; Müller C; Fujiwara K; Beckert B; Ito K; Wilson DN; Chiba S
    Nat Commun; 2019 Nov; 10(1):5397. PubMed ID: 31776341
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.