These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 36882691)
1. Propensity scores as a novel method to guide sample allocation and minimize batch effects during the design of high throughput experiments. Carry PM; Vigers T; Vanderlinden LA; Keeter C; Dong F; Buckner T; Litkowski E; Yang I; Norris JM; Kechris K BMC Bioinformatics; 2023 Mar; 24(1):86. PubMed ID: 36882691 [TBL] [Abstract][Full Text] [Related]
2. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
3. Studies with many covariates and few outcomes: selecting covariates and implementing propensity-score-based confounding adjustments. Patorno E; Glynn RJ; Hernández-Díaz S; Liu J; Schneeweiss S Epidemiology; 2014 Mar; 25(2):268-78. PubMed ID: 24487209 [TBL] [Abstract][Full Text] [Related]
4. OSAT: a tool for sample-to-batch allocations in genomics experiments. Yan L; Ma C; Wang D; Hu Q; Qin M; Conroy JM; Sucheston LE; Ambrosone CB; Johnson CS; Wang J; Liu S BMC Genomics; 2012 Dec; 13():689. PubMed ID: 23228338 [TBL] [Abstract][Full Text] [Related]
5. Effectiveness and cost-effectiveness of four different strategies for SARS-CoV-2 surveillance in the general population (CoV-Surv Study): a structured summary of a study protocol for a cluster-randomised, two-factorial controlled trial. Deckert A; Anders S; de Allegri M; Nguyen HT; Souares A; McMahon S; Boerner K; Meurer M; Herbst K; Sand M; Koeppel L; Siems T; Brugnara L; Brenner S; Burk R; Lou D; Kirrmaier D; Duan Y; Ovchinnikova S; Marx M; Kräusslich HG; Knop M; Bärnighausen T; Denkinger C Trials; 2021 Jan; 22(1):39. PubMed ID: 33419461 [TBL] [Abstract][Full Text] [Related]
6. Applied comparison of large-scale propensity score matching and cardinality matching for causal inference in observational research. Fortin SP; Johnston SS; Schuemie MJ BMC Med Res Methodol; 2021 May; 21(1):109. PubMed ID: 34030640 [TBL] [Abstract][Full Text] [Related]
8. Blind estimation and correction of microarray batch effect. Varma S PLoS One; 2020; 15(4):e0231446. PubMed ID: 32271844 [TBL] [Abstract][Full Text] [Related]
9. Indirect covariate balance and residual confounding: An applied comparison of propensity score matching and cardinality matching. Fortin SP; Schuemie M Pharmacoepidemiol Drug Saf; 2022 Dec; 31(12):1242-1252. PubMed ID: 35811396 [TBL] [Abstract][Full Text] [Related]
10. BatchI: Batch effect Identification in high-throughput screening data using a dynamic programming algorithm. Papiez A; Marczyk M; Polanska J; Polanski A Bioinformatics; 2019 Jun; 35(11):1885-1892. PubMed ID: 30357412 [TBL] [Abstract][Full Text] [Related]
11. Evaluating large-scale propensity score performance through real-world and synthetic data experiments. Tian Y; Schuemie MJ; Suchard MA Int J Epidemiol; 2018 Dec; 47(6):2005-2014. PubMed ID: 29939268 [TBL] [Abstract][Full Text] [Related]
12. Using Super Learner Prediction Modeling to Improve High-dimensional Propensity Score Estimation. Wyss R; Schneeweiss S; van der Laan M; Lendle SD; Ju C; Franklin JM Epidemiology; 2018 Jan; 29(1):96-106. PubMed ID: 28991001 [TBL] [Abstract][Full Text] [Related]
13. Batch correction of microarray data substantially improves the identification of genes differentially expressed in rheumatoid arthritis and osteoarthritis. Kupfer P; Guthke R; Pohlers D; Huber R; Koczan D; Kinne RW BMC Med Genomics; 2012 Jun; 5():23. PubMed ID: 22682473 [TBL] [Abstract][Full Text] [Related]
14. Comparison of the ability of double-robust estimators to correct bias in propensity score matching analysis. A Monte Carlo simulation study. Nguyen TL; Collins GS; Spence J; Devereaux PJ; Daurès JP; Landais P; Le Manach Y Pharmacoepidemiol Drug Saf; 2017 Dec; 26(12):1513-1519. PubMed ID: 28984050 [TBL] [Abstract][Full Text] [Related]
15. Variable Selection for Confounding Adjustment in High-dimensional Covariate Spaces When Analyzing Healthcare Databases. Schneeweiss S; Eddings W; Glynn RJ; Patorno E; Rassen J; Franklin JM Epidemiology; 2017 Mar; 28(2):237-248. PubMed ID: 27779497 [TBL] [Abstract][Full Text] [Related]
16. Propensity score specification for optimal estimation of average treatment effect with binary response. Craycroft JA; Huang J; Kong M Stat Methods Med Res; 2020 Dec; 29(12):3623-3640. PubMed ID: 32640934 [TBL] [Abstract][Full Text] [Related]
17. Batch correction evaluation framework using a-priori gene-gene associations: applied to the GTEx dataset. Somekh J; Shen-Orr SS; Kohane IS BMC Bioinformatics; 2019 May; 20(1):268. PubMed ID: 31138121 [TBL] [Abstract][Full Text] [Related]
18. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study. Austin PC; Grootendorst P; Anderson GM Stat Med; 2007 Feb; 26(4):734-53. PubMed ID: 16708349 [TBL] [Abstract][Full Text] [Related]
19. Batch effect confounding leads to strong bias in performance estimates obtained by cross-validation. Soneson C; Gerster S; Delorenzi M PLoS One; 2014; 9(6):e100335. PubMed ID: 24967636 [TBL] [Abstract][Full Text] [Related]
20. ARTS: automated randomization of multiple traits for study design. Maienschein-Cline M; Lei Z; Gardeux V; Abbasi T; Machado RF; Gordeuk V; Desai AA; Saraf S; Bahroos N; Lussier Y Bioinformatics; 2014 Jun; 30(11):1637-9. PubMed ID: 24493035 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]