BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36882905)

  • 1. Influence of Backbone Regioregularity on the Optoelectronic and Mechanical Response of Conjugated Polyelectrolyte-Based Hydrogels.
    Hollingsworth WR; Johnston AR; Jia M; Luo L; Park Y; Meier W; Palmer J; Rolandi M; Ayzner AL
    J Phys Chem B; 2023 Mar; 127(10):2277-2285. PubMed ID: 36882905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exciton Transfer Between Extended Electronic States in Conjugated Inter-Polyelectrolyte Complexes.
    Richards R; Song Y; O'Connor L; Wang X; Dailing EA; Bragg AE; Ayzner AL
    ACS Appl Mater Interfaces; 2024 Jan; 16(16):19995-20010. PubMed ID: 38289236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conjugated Polyelectrolyte-Based Complex Fluids as Aqueous Exciton Transport Networks.
    Johnston AR; Minckler ED; Shockley MCJ; Matsushima LN; Perry SL; Ayzner AL
    Angew Chem Int Ed Engl; 2022 May; 61(20):e202117759. PubMed ID: 35229429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recyclable Conjugated Polyelectrolyte Hydrogels for Pseudocapacitor Fabrication.
    Jiang Y; Vázquez RJ; McCuskey SR; Yip BRP; Quek G; Ohayon D; Kundukad B; Wang X; Bazan GC
    ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38150629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy Transfer in Aqueous Light Harvesting Antennae Based on Brush-like Inter-Conjugated Polyelectrolyte Complexes.
    Pitch GM; Matsushima LN; Kraemer Y; Dailing EA; Ayzner AL
    Macromolecules; 2022 Dec; 55(23):10302-10311. PubMed ID: 36530525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong and tough self-wrinkling polyelectrolyte hydrogels constructed
    Shi J; Dong R; Ji C; Fan W; Yu T; Xia Y; Sui K
    Soft Matter; 2022 May; 18(19):3748-3755. PubMed ID: 35506704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electro-actuated hydrogel walkers with dual responsive legs.
    Morales D; Palleau E; Dickey MD; Velev OD
    Soft Matter; 2014 Mar; 10(9):1337-48. PubMed ID: 24651405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An injectable thermosensitive photothermal-network hydrogel for near-infrared-triggered drug delivery and synergistic photothermal-chemotherapy.
    Liu C; Guo X; Ruan C; Hu H; Jiang BP; Liang H; Shen XC
    Acta Biomater; 2019 Sep; 96():281-294. PubMed ID: 31319202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose-responsive hydrogels based on dynamic covalent chemistry and inclusion complexation.
    Yang T; Ji R; Deng XX; Du FS; Li ZC
    Soft Matter; 2014 Apr; 10(15):2671-8. PubMed ID: 24647364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyzwitterions as a Versatile Building Block of Tough Hydrogels: From Polyelectrolyte Complex Gels to Double-Network Gels.
    Yin H; King DR; Sun TL; Saruwatari Y; Nakajima T; Kurokawa T; Gong JP
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):50068-50076. PubMed ID: 33085900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A family of mechanically adaptive supramolecular graphene oxide/poly(ethylenimine) hydrogels from aqueous assembly.
    Wang C; Duan Y; Zacharia NS; Vogt BD
    Soft Matter; 2017 Feb; 13(6):1161-1170. PubMed ID: 28098316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exciton Transfer and Emergent Excitonic States in Oppositely-Charged Conjugated Polyelectrolyte Complexes.
    Hollingsworth WR; Segura C; Balderrama J; Lopez N; Schleissner P; Ayzner AL
    J Phys Chem B; 2016 Aug; 120(31):7767-74. PubMed ID: 27428604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanostructured degradable macroporous hydrogel scaffolds with controllable internal morphologies via reactive electrospinning.
    Xu F; Gough I; Dorogin J; Sheardown H; Hoare T
    Acta Biomater; 2020 Mar; 104():135-146. PubMed ID: 31904560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A ionic liquid enhanced conductive hydrogel for strain sensing applications.
    Zhou Y; Fei X; Tian J; Xu L; Li Y
    J Colloid Interface Sci; 2022 Jan; 606(Pt 1):192-203. PubMed ID: 34388570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanically tuneable physical nanocomposite hydrogels from polyelectrolyte complex templated silica nanoparticles for anionic therapeutic delivery.
    Newham G; Evans SD; Ong ZY
    J Colloid Interface Sci; 2022 Jul; 617():224-235. PubMed ID: 35276523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlating Ionic Conductivity and Microstructure in Polyelectrolyte Hydrogels for Bioelectronic Devices.
    Jia M; Luo L; Rolandi M
    Macromol Rapid Commun; 2022 Mar; 43(6):e2100687. PubMed ID: 35020249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable Pressure Sensor of
    Ryplida B; In I; Park SY
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):51766-51775. PubMed ID: 33146512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complexation of a Conjugated Polyelectrolyte and Impact on Optoelectronic Properties.
    Danielsen SPO; Nguyen TQ; Fredrickson GH; Segalman RA
    ACS Macro Lett; 2019 Jan; 8(1):88-94. PubMed ID: 35619414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyelectrolyte complexation via viscoelastic phase separation results in tough and self-recovering porous hydrogels.
    Murakawa K; King DR; Sun T; Guo H; Kurokawa T; Gong JP
    J Mater Chem B; 2019 Sep; 7(35):5296-5305. PubMed ID: 31432060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyelectrolyte-based physical adhesive hydrogels with excellent mechanical properties for biomedical applications.
    Li W; Feng R; Wang R; Li D; Jiang W; Liu H; Guo Z; Serpe MJ; Hu L
    J Mater Chem B; 2018 Aug; 6(29):4799-4807. PubMed ID: 32254307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.