BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 36882917)

  • 1. Acoustically Evoked Compound Action Potentials Recorded From Cochlear Implant Users With Preserved Acoustic Hearing.
    Kim JS; Brown CJ
    Ear Hear; 2023 Sep-Oct 01; 44(5):1061-1077. PubMed ID: 36882917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Band-Limited Chirp-Evoked Compound Action Potential in Guinea Pig: Comprehensive Neural Measure for Cochlear Implantation Monitoring.
    Adel Y; Tillein J; Petzold H; Weissgerber T; Baumann U
    Ear Hear; 2021; 42(1):142-162. PubMed ID: 32665481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Neural Response Telemetry to Monitor Physiological Responses to Acoustic Stimulation in Hybrid Cochlear Implant Users.
    Abbas PJ; Tejani VD; Scheperle RA; Brown CJ
    Ear Hear; 2017; 38(4):409-425. PubMed ID: 28085738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postoperative Electrocochleography from Hybrid Cochlear Implant users: An Alternative Analysis Procedure.
    Kim JS; Tejani VD; Abbas PJ; Brown CJ
    Hear Res; 2018 Dec; 370():304-315. PubMed ID: 30393003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Guinea Pig Model Suggests That Objective Assessment of Acoustic Hearing Preservation in Human Ears With Cochlear Implants Is Confounded by Shifts in the Spatial Origin of Acoustically Evoked Potential Measurements Along the Cochlear Length.
    Lee C; Hartsock JJ; Salt AN; Lichtenhan JT
    Ear Hear; 2024 May-Jun 01; 45(3):666-678. PubMed ID: 38178312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intraoperative round window recordings to acoustic stimuli from cochlear implant patients.
    Choudhury B; Fitzpatrick DC; Buchman CA; Wei BP; Dillon MT; He S; Adunka OF
    Otol Neurotol; 2012 Dec; 33(9):1507-15. PubMed ID: 23047261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of auditory brain stem responses elicited by click and chirp stimuli in adults with normal hearing and sensory hearing loss.
    Maloff ES; Hood LJ
    Ear Hear; 2014; 35(2):271-82. PubMed ID: 24441741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An investigation of the use of band-limited chirp stimuli to obtain the auditory brainstem response.
    Bell SL; Allen R; Lutman ME
    Int J Audiol; 2002 Jul; 41(5):271-8. PubMed ID: 12166686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of intracochlear damage with cochlear implantation in a gerbil model of hearing loss.
    Choudhury B; Adunka OF; Demason CE; Ahmad FI; Buchman CA; Fitzpatrick DC
    Otol Neurotol; 2011 Oct; 32(8):1370-8. PubMed ID: 21921858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Middle Latency Responses to Optimized Chirps in Adult Cochlear Implant Users.
    Alemi R; Lehmann A
    J Am Acad Audiol; 2019 May; 30(5):396-405. PubMed ID: 31044692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auditory brainstem response recording to multiple interleaved broadband chirps.
    Cebulla M; Stürzebecher E; Don M; Müller-Mazzotta J
    Ear Hear; 2012; 33(4):466-79. PubMed ID: 22343544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Click- and chirp-evoked human compound action potentials.
    Chertoff M; Lichtenhan J; Willis M
    J Acoust Soc Am; 2010 May; 127(5):2992-6. PubMed ID: 21117748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Searching for the optimal stimulus eliciting auditory brainstem responses in humans.
    Fobel O; Dau T
    J Acoust Soc Am; 2004 Oct; 116(4 Pt 1):2213-22. PubMed ID: 15532653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditory brainstem responses to level-specific chirps in normal-hearing adults.
    Kristensen SG; Elberling C
    J Am Acad Audiol; 2012 Oct; 23(9):712-21. PubMed ID: 23072963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Residual Hair Cell Responses in Electric-Acoustic Stimulation Cochlear Implant Users with Complete Loss of Acoustic Hearing After Implantation.
    Tejani VD; Kim JS; Oleson JJ; Abbas PJ; Brown CJ; Hansen MR; Gantz BJ
    J Assoc Res Otolaryngol; 2021 Apr; 22(2):161-176. PubMed ID: 33538936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracochlear Recordings of Acoustically and Electrically Evoked Potentials in Nucleus Hybrid L24 Cochlear Implant Users and Their Relationship to Speech Perception.
    Kim JR; Tejani VD; Abbas PJ; Brown CJ
    Front Neurosci; 2017; 11():216. PubMed ID: 28469553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Psychoacoustic and electrophysiological electric-acoustic interaction effects in cochlear implant users with ipsilateral residual hearing.
    Imsiecke M; Büchner A; Lenarz T; Nogueira W
    Hear Res; 2020 Feb; 386():107873. PubMed ID: 31884220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auditory brainstem responses to broad-band chirps: amplitude growth functions in sedated and anaesthetised infants.
    Mühler R; Rahne T; Verhey JL
    Int J Pediatr Otorhinolaryngol; 2013 Jan; 77(1):49-53. PubMed ID: 23062881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical Auditory Evoked Potentials Recorded Directly Through the Cochlear Implant in Cochlear Implant Recipients: a Feasibility Study.
    Attias J; HabibAllah S; Aditya Tarigoppula VS; Glick H; Chen C; Kanthaiah K; Litvak L
    Ear Hear; 2022 Sep-Oct 01; 43(5):1426-1436. PubMed ID: 35245922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neonate Auditory Brainstem Responses to CE-Chirp and CE-Chirp Octave Band Stimuli I: Versus Click and Tone Burst Stimuli.
    Cobb KM; Stuart A
    Ear Hear; 2016; 37(6):710-723. PubMed ID: 27556529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.