BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 36883003)

  • 1. Surfactants or scaffolds? RNAs of varying lengths control the thermodynamic stability of condensates differently.
    Sanchez-Burgos I; Herriott L; Collepardo-Guevara R; Espinosa JR
    Biophys J; 2023 Jul; 122(14):2973-2987. PubMed ID: 36883003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Valency and Binding Affinity Variations Can Regulate the Multilayered Organization of Protein Condensates with Many Components.
    Sanchez-Burgos I; Espinosa JR; Joseph JA; Collepardo-Guevara R
    Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33672806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-Dependent Material Properties of Aging Biomolecular Condensates from Different Viscoelasticity Measurements in Molecular Dynamics Simulations.
    Tejedor AR; Collepardo-Guevara R; Ramírez J; Espinosa JR
    J Phys Chem B; 2023 May; 127(20):4441-4459. PubMed ID: 37194953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aging can transform single-component protein condensates into multiphase architectures.
    Garaizar A; Espinosa JR; Joseph JA; Krainer G; Shen Y; Knowles TPJ; Collepardo-Guevara R
    Proc Natl Acad Sci U S A; 2022 Jun; 119(26):e2119800119. PubMed ID: 35727989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA length has a non-trivial effect in the stability of biomolecular condensates formed by RNA-binding proteins.
    Sanchez-Burgos I; Espinosa JR; Joseph JA; Collepardo-Guevara R
    PLoS Comput Biol; 2022 Feb; 18(2):e1009810. PubMed ID: 35108264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Electrostatics Govern the Emulsion Stability of Biomolecular Condensates.
    Welsh TJ; Krainer G; Espinosa JR; Joseph JA; Sridhar A; Jahnel M; Arter WE; Saar KL; Alberti S; Collepardo-Guevara R; Knowles TPJ
    Nano Lett; 2022 Jan; 22(2):612-621. PubMed ID: 35001622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liquid network connectivity regulates the stability and composition of biomolecular condensates with many components.
    Espinosa JR; Joseph JA; Sanchez-Burgos I; Garaizar A; Frenkel D; Collepardo-Guevara R
    Proc Natl Acad Sci U S A; 2020 Jun; 117(24):13238-13247. PubMed ID: 32482873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible Kinetic Trapping of FUS Biomolecular Condensates.
    Chatterjee S; Kan Y; Brzezinski M; Koynov K; Regy RM; Murthy AC; Burke KA; Michels JJ; Mittal J; Fawzi NL; Parekh SH
    Adv Sci (Weinh); 2022 Feb; 9(4):e2104247. PubMed ID: 34862761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein compactness and interaction valency define the architecture of a biomolecular condensate across scales.
    Polyansky AA; Gallego LD; Efremov RG; Köhler A; Zagrovic B
    Elife; 2023 Jul; 12():. PubMed ID: 37470705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamics and kinetics of phase separation of protein-RNA mixtures by a minimal model.
    Joseph JA; Espinosa JR; Sanchez-Burgos I; Garaizar A; Frenkel D; Collepardo-Guevara R
    Biophys J; 2021 Apr; 120(7):1219-1230. PubMed ID: 33571491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleation of Biomolecular Condensates from Finite-Sized Simulations.
    Li L; Paloni M; Finney AR; Barducci A; Salvalaglio M
    J Phys Chem Lett; 2023 Feb; 14(7):1748-1755. PubMed ID: 36758221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 'RNA modulation of transport properties and stability in phase-separated condensates.
    Tejedor AR; Garaizar A; Ramírez J; Espinosa JR
    Biophys J; 2021 Dec; 120(23):5169-5186. PubMed ID: 34762868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using quantitative reconstitution to investigate multicomponent condensates.
    Currie SL; Rosen MK
    RNA; 2022 Jan; 28(1):27-35. PubMed ID: 34772789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein structural transitions critically transform the network connectivity and viscoelasticity of RNA-binding protein condensates but RNA can prevent it.
    Tejedor AR; Sanchez-Burgos I; Estevez-Espinosa M; Garaizar A; Collepardo-Guevara R; Ramirez J; Espinosa JR
    Nat Commun; 2022 Sep; 13(1):5717. PubMed ID: 36175408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proximity to criticality predicts surface properties of biomolecular condensates.
    Pyo AGT; Zhang Y; Wingreen NS
    Proc Natl Acad Sci U S A; 2023 Jun; 120(23):e2220014120. PubMed ID: 37252985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA regulates cohesiveness and porosity of a biological condensate.
    Chou HY; Aksimentiev A
    bioRxiv; 2024 Jan; ():. PubMed ID: 38260307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability and deformation of biomolecular condensates under the action of shear flow.
    Coronas LE; Van T; Iorio A; Lapidus LJ; Feig M; Sterpone F
    J Chem Phys; 2024 Jun; 160(21):. PubMed ID: 38832749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Protein Collapse Determines Phase Equilibria of a Biological Condensate.
    Chou HY; Aksimentiev A
    J Phys Chem Lett; 2020 Jun; 11(12):4923-4929. PubMed ID: 32426986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defining basic rules for hardening influenza A virus liquid condensates.
    Etibor TA; Vale-Costa S; Sridharan S; Brás D; Becher I; Mello VH; Ferreira F; Alenquer M; Savitski MM; Amorim MJ
    Elife; 2023 Apr; 12():. PubMed ID: 37013374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase Separation in Mixtures of Prion-Like Low Complexity Domains is Driven by the Interplay of Homotypic and Heterotypic Interactions.
    Farag M; Borcherds WM; Bremer A; Mittag T; Pappu RV
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.