These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36883463)

  • 21. Wax Spreading in Paper under Controlled Pressure and Temperature.
    Hong W; Zhou J; Kanungo M; Jia N; Dinsmore AD
    Langmuir; 2018 Jan; 34(1):432-441. PubMed ID: 29239620
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Laser-induced selective wax reflow for paper-based microfluidics.
    Zhang Y; Liu J; Wang H; Fan Y
    RSC Adv; 2019 Apr; 9(20):11460-11464. PubMed ID: 35520212
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Draw your assay: Fabrication of low-cost paper-based diagnostic and multi-well test zones by drawing on a paper.
    Oyola-Reynoso S; Heim AP; Halbertsma-Black J; Zhao C; Tevis ID; Çınar S; Cademartiri R; Liu X; Bloch JF; Thuo MM
    Talanta; 2015 Nov; 144():289-93. PubMed ID: 26452824
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Understanding wax screen-printing: a novel patterning process for microfluidic cloth-based analytical devices.
    Liu M; Zhang C; Liu F
    Anal Chim Acta; 2015 Sep; 891():234-46. PubMed ID: 26388382
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of fully enclosed paper microfluidic devices using plasma deposition and etching.
    Raj N; Breedveld V; Hess DW
    Lab Chip; 2019 Oct; 19(19):3337-3343. PubMed ID: 31501838
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D printing direct to industrial roll-to-roll casting for fast prototyping of scalable microfluidic systems.
    Boutiette AL; Toothaker C; Corless B; Boukaftane C; Howell C
    PLoS One; 2020; 15(12):e0244324. PubMed ID: 33370381
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of paper-based analytical devices by a laminating method with thermal ink ribbons, sticky notes, and office appliances.
    Inagawa A; Iimura KI; Uehara N
    Anal Methods; 2023 Jan; 15(4):537-542. PubMed ID: 36645123
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insights into the Fabrication and Electrochemical Aspects of Paper Microfluidics-Based Biosensor Module.
    Kumari R; Singh A; Azad UP; Chandra P
    Biosensors (Basel); 2023 Sep; 13(9):. PubMed ID: 37754125
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent applications of paper-based point-of-care devices for biomarker detection.
    Suntornsuk W; Suntornsuk L
    Electrophoresis; 2020 Mar; 41(5-6):287-305. PubMed ID: 31613392
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hybrid Device Fabrication Using Roll-to-Roll Printing for Personal Environmental Monitoring.
    Phung TH; Gafurov AN; Kim I; Kim SY; Kim KM; Lee TM
    Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376333
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wax screen-printable ink for massive fabrication of negligible-to-nil cost fabric-based microfluidic (bio)sensing devices for colorimetric analysis of sweat.
    Tzianni EI; Sakkas VA; Prodromidis MI
    Talanta; 2024 Mar; 269():125475. PubMed ID: 38039670
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Leveraging Arylboronic Acid - Cellulose Binding as a Versatile and Scalable Approach to Hydrophobic Patterning.
    Beard JW; Murty S; Caulkins C; Strenk AR; Luta EP; Hunt SL; Yates MZ; Miller BL
    Adv Mater Technol; 2022 Jul; 7(7):. PubMed ID: 35935145
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A simple epoxy resin screen-printed paper-based analytical device for detection of phosphate in soil.
    Thongkam T; Hemavibool K
    Anal Methods; 2022 Mar; 14(10):1069-1076. PubMed ID: 35195618
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Paper-based optical nanosensors - A review.
    Ghasemi F; Fahimi-Kashani N; Bigdeli A; Alshatteri AH; Abbasi-Moayed S; Al-Jaf SH; Merry MY; Omer KM; Hormozi-Nezhad MR
    Anal Chim Acta; 2023 Jan; 1238():340640. PubMed ID: 36464453
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dermatological testing of an improved apertured film surface for feminine hygiene pads.
    Farage MA; Wang B; Tucker H; Ogle J; Rodenberg C; Azuka CE; Klebba C; Wilhelm KP
    Cutan Ocul Toxicol; 2012 Sep; 31(3):198-203. PubMed ID: 22141375
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Absorbent products for urinary/faecal incontinence: a comparative evaluation of key product designs.
    Fader M; Cottenden A; Getliffe K; Gage H; Clarke-O'Neill S; Jamieson K; Green N; Williams P; Brooks R; Malone-Lee J
    Health Technol Assess; 2008 Jul; 12(29):iii-iv, ix-185. PubMed ID: 18547500
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping.
    Songjaroen T; Dungchai W; Chailapakul O; Laiwattanapaisal W
    Talanta; 2011 Oct; 85(5):2587-93. PubMed ID: 21962687
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Paper-based piezoelectric touch pads with hydrothermally grown zinc oxide nanowires.
    Li X; Wang YH; Zhao C; Liu X
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22004-12. PubMed ID: 25420995
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of Paper-Based Microfluidics by Spray on Printed Paper.
    Juang YJ; Hsu SK
    Polymers (Basel); 2022 Feb; 14(3):. PubMed ID: 35160629
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding wax printing: a simple micropatterning process for paper-based microfluidics.
    Carrilho E; Martinez AW; Whitesides GM
    Anal Chem; 2009 Aug; 81(16):7091-5. PubMed ID: 20337388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.