These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 36883480)

  • 1. Synthetic engineering of a new biocatalyst encapsulating [NiFe]-hydrogenases for enhanced hydrogen production.
    Jiang Q; Li T; Yang J; Aitchison CM; Huang J; Chen Y; Huang F; Wang Q; Cooper AI; Liu LN
    J Mater Chem B; 2023 Mar; 11(12):2684-2692. PubMed ID: 36883480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytoplasmic and membrane-bound hydrogenases from Pyrococcus furiosus.
    Wu CH; Haja DK; Adams MWW
    Methods Enzymol; 2018; 613():153-168. PubMed ID: 30509464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From enzyme maturation to synthetic chemistry: the case of hydrogenases.
    Artero V; Berggren G; Atta M; Caserta G; Roy S; Pecqueur L; Fontecave M
    Acc Chem Res; 2015 Aug; 48(8):2380-7. PubMed ID: 26165393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembling biomolecular catalysts for hydrogen production.
    Jordan PC; Patterson DP; Saboda KN; Edwards EJ; Miettinen HM; Basu G; Thielges MC; Douglas T
    Nat Chem; 2016 Feb; 8(2):179-85. PubMed ID: 26791902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogenases and H(+)-reduction in primary energy conservation.
    Vignais PM
    Results Probl Cell Differ; 2008; 45():223-52. PubMed ID: 18500479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reprogramming bacterial protein organelles as a nanoreactor for hydrogen production.
    Li T; Jiang Q; Huang J; Aitchison CM; Huang F; Yang M; Dykes GF; He HL; Wang Q; Sprick RS; Cooper AI; Liu LN
    Nat Commun; 2020 Oct; 11(1):5448. PubMed ID: 33116131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of biohydrogen by recombinant expression of [NiFe]-hydrogenase 1 in Escherichia coli.
    Kim JY; Jo BH; Cha HJ
    Microb Cell Fact; 2010 Jul; 9():54. PubMed ID: 20604966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of biohydrogen by heterologous expression of oxygen-tolerant Hydrogenovibrio marinus [NiFe]-hydrogenase in Escherichia coli.
    Kim JY; Jo BH; Cha HJ
    J Biotechnol; 2011 Sep; 155(3):312-9. PubMed ID: 21794837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-free synthesis and maturation of [FeFe] hydrogenases.
    Boyer ME; Stapleton JA; Kuchenreuther JM; Wang CW; Swartz JR
    Biotechnol Bioeng; 2008 Jan; 99(1):59-67. PubMed ID: 17546685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling NiFe hydrogenases: nickel-based electrocatalysts for hydrogen production.
    Canaguier S; Artero V; Fontecave M
    Dalton Trans; 2008 Jan; (3):315-25. PubMed ID: 18411840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and characterisation of synthetic operons for biohydrogen technology.
    Lamont CM; Sargent F
    Arch Microbiol; 2017 Apr; 199(3):495-503. PubMed ID: 27872947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Yield Production of Catalytically Active Regulatory [NiFe]-Hydrogenase From
    Fan Q; Caserta G; Lorent C; Zebger I; Neubauer P; Lenz O; Gimpel M
    Front Microbiol; 2022; 13():894375. PubMed ID: 35572669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [NiFe] hydrogenases: a common active site for hydrogen metabolism under diverse conditions.
    Shafaat HS; Rüdiger O; Ogata H; Lubitz W
    Biochim Biophys Acta; 2013; 1827(8-9):986-1002. PubMed ID: 23399489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using a high-throughput, whole-cell hydrogenase assay to identify potential small molecule inhibitors of [NiFe]-hydrogenase.
    Sebastiampillai S; Lacasse MJ; McCusker S; Campbell T; Nitz M; Zamble DB
    Metallomics; 2022 Oct; 14(10):. PubMed ID: 36190308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. O
    Lu Y; Koo J
    Biotechnol Bioeng; 2019 Nov; 116(11):3124-3135. PubMed ID: 31403182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation.
    Peters JW; Schut GJ; Boyd ES; Mulder DW; Shepard EM; Broderick JB; King PW; Adams MW
    Biochim Biophys Acta; 2015 Jun; 1853(6):1350-69. PubMed ID: 25461840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification, cloning and heterologous expression of active [NiFe]-hydrogenase 2 from Citrobacter sp. SG in Escherichia coli.
    Maier JA; Ragozin S; Jeltsch A
    J Biotechnol; 2015 Apr; 199():1-8. PubMed ID: 25678135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maturation of [NiFe]-hydrogenases in Escherichia coli.
    Forzi L; Sawers RG
    Biometals; 2007 Jun; 20(3-4):565-78. PubMed ID: 17216401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formate hydrogenlyase: A group 4 [NiFe]-hydrogenase in tandem with a formate dehydrogenase.
    Finney AJ; Sargent F
    Adv Microb Physiol; 2019; 74():465-486. PubMed ID: 31126535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural features of [NiFeSe] and [NiFe] hydrogenases determining their different properties: a computational approach.
    Baltazar CS; Teixeira VH; Soares CM
    J Biol Inorg Chem; 2012 Apr; 17(4):543-55. PubMed ID: 22286956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.