These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 36883572)

  • 1. An automated reaction route mapping for the reaction of NO and active species on Ag
    Yasumura S; Kato T; Toyao T; Maeno Z; Shimizu KI
    Phys Chem Chem Phys; 2023 Mar; 25(12):8524-8531. PubMed ID: 36883572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the catalytic activity of Au3, Au4+, Au5, and Au5- in the gas-phase reaction of H2 and O2 to form hydrogen peroxide: a density functional theory investigation.
    Joshi AM; Delgass WN; Thomson KT
    J Phys Chem B; 2005 Dec; 109(47):22392-406. PubMed ID: 16853917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementation and performance of the artificial force induced reaction method in the GRRM17 program.
    Maeda S; Harabuchi Y; Takagi M; Saita K; Suzuki K; Ichino T; Sumiya Y; Sugiyama K; Ono Y
    J Comput Chem; 2018 Feb; 39(4):233-251. PubMed ID: 29135034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Combined Reaction Path Search and Hybrid Solvation Method for the Systematic Exploration of Elementary Reactions at the Solid-Liquid Interface.
    Hasegawa T; Hagiwara S; Otani M; Maeda S
    J Phys Chem Lett; 2023 Oct; 14(39):8796-8804. PubMed ID: 37747821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined Automated Reaction Pathway Searches and Sparse Modeling Analysis for Catalytic Properties of Lowest Energy Twins of Cu
    Iwasa T; Sato T; Takagi M; Gao M; Lyalin A; Kobayashi M; Shimizu KI; Maeda S; Taketsugu T
    J Phys Chem A; 2019 Jan; 123(1):210-217. PubMed ID: 30540470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Automated Reaction Path Search Methods to a Systematic Search of Single-Bond Activation Pathways Catalyzed by Small Metal Clusters: A Case Study on H-H Activation by Gold.
    Gao M; Lyalin A; Maeda S; Taketsugu T
    J Chem Theory Comput; 2014 Apr; 10(4):1623-30. PubMed ID: 26580374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prevalence of Bimolecular Routes in the Activation of Diatomic Molecules with Strong Chemical Bonds (O2, NO, CO, N2) on Catalytic Surfaces.
    Hibbitts D; Iglesia E
    Acc Chem Res; 2015 May; 48(5):1254-62. PubMed ID: 25921328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-induced water splitting by titanium-tetrahydroxide: a computational study.
    Kazaryan A; van Santen R; Baerends EJ
    Phys Chem Chem Phys; 2015 Aug; 17(31):20308-21. PubMed ID: 26190017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction Dynamics of NO
    Tachikawa H
    J Phys Chem A; 2022 Jan; 126(1):119-124. PubMed ID: 34962795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring transition state structures for intramolecular pathways by the artificial force induced reaction method.
    Maeda S; Taketsugu T; Morokuma K
    J Comput Chem; 2014 Jan; 35(2):166-73. PubMed ID: 24186858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational survey of humin formation from 5-(hydroxymethyl)furfural under basic conditions.
    Tashiro K; Kobayashi M; Nakajima K; Taketsugu T
    RSC Adv; 2023 May; 13(24):16293-16299. PubMed ID: 37266499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Catalysis Using the Artificial Force Induced Reaction Method.
    Sameera WM; Maeda S; Morokuma K
    Acc Chem Res; 2016 Apr; 49(4):763-73. PubMed ID: 27023677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Tree"-like Multidentate Ligand-Assisted Synthesis of Polymolybdate-Based Architectures with Multinuclear Metal Clusters: Supercapacitor and Electrochemical Sensing Performances.
    Chen Y; Chang Z; Zhang Y; Chen K; Wang X
    Inorg Chem; 2022 Oct; 61(40):16020-16027. PubMed ID: 36177812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic water formation on platinum: a first-principles study.
    Michaelides A; Hu P
    J Am Chem Soc; 2001 May; 123(18):4235-42. PubMed ID: 11457189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxylation of Aromatics by H
    Rebilly JN; Zhang W; Herrero C; Dridi H; Sénéchal-David K; Guillot R; Banse F
    Chemistry; 2020 Jan; 26(3):659-668. PubMed ID: 31696991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic exploration of the mechanism of chemical reactions: the global reaction route mapping (GRRM) strategy using the ADDF and AFIR methods.
    Maeda S; Ohno K; Morokuma K
    Phys Chem Chem Phys; 2013 Mar; 15(11):3683-701. PubMed ID: 23389653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Optimization of Promoter and Support for Co-based/zeolites Catalysts in Catalytic Reduction of NO
    Pan H; Jian YF; Chen NN; Liu HX; He C; He YF
    Huan Jing Ke Xue; 2017 Jul; 38(7):3085-3094. PubMed ID: 29964653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial Force Induced Reaction Method for Systematic Determination of Complex Reaction Mechanisms.
    Sameera WM; Kumar Sharma A; Maeda S; Morokuma K
    Chem Rec; 2016 Oct; 16(5):2349-2363. PubMed ID: 27492586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal Active Sites and Their Catalytic Functions in Zeolites: Insights from Solid-State NMR Spectroscopy.
    Xu J; Wang Q; Deng F
    Acc Chem Res; 2019 Aug; 52(8):2179-2189. PubMed ID: 31063347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvation and Mobilization of Copper Active Sites in Zeolites by Ammonia: Consequences for the Catalytic Reduction of Nitrogen Oxides.
    Paolucci C; Di Iorio JR; Schneider WF; Gounder R
    Acc Chem Res; 2020 Sep; 53(9):1881-1892. PubMed ID: 32786332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.