These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 36883572)
21. Understanding CO oxidation on the Pt(111) surface based on a reaction route network. Sugiyama K; Sumiya Y; Takagi M; Saita K; Maeda S Phys Chem Chem Phys; 2019 Jul; 21(26):14366-14375. PubMed ID: 30723846 [TBL] [Abstract][Full Text] [Related]
22. Global Li HB; Jia Q RSC Adv; 2019 May; 9(29):16900-16908. PubMed ID: 35516412 [TBL] [Abstract][Full Text] [Related]
23. The effect of soot on ammonium nitrate species and NO2 selective catalytic reduction over Cu-zeolite catalyst-coated particulate filter. Mihai O; Tamm S; Stenfeldt M; Olsson L Philos Trans A Math Phys Eng Sci; 2016 Feb; 374(2061):. PubMed ID: 26755757 [TBL] [Abstract][Full Text] [Related]
24. A reaction route network for methanol decomposition on a Pt(111) surface. Sugiyama K; Saita K; Maeda S J Comput Chem; 2021 Nov; 42(30):2163-2169. PubMed ID: 34432314 [TBL] [Abstract][Full Text] [Related]
25. Characterization of Ti-Beta zeolites and their reactivity for the photocatalytic reduction of CO2 with H2O. Ikeue K; Yamashita H; Takewaki T; Davis ME; Anpo M J Synchrotron Radiat; 2001 Mar; 8(Pt 2):602-4. PubMed ID: 11512865 [TBL] [Abstract][Full Text] [Related]
26. Mechanism study on TiO Meng F; Guo L; Zou H; Zhu B; Zhou F; Zeng Y; Han J; Yang J; Zhang S; Zhong Q J Hazard Mater; 2020 Nov; 399():123033. PubMed ID: 32544767 [TBL] [Abstract][Full Text] [Related]
27. Oxygen activation by the noncoupled binuclear copper site in peptidylglycine alpha-hydroxylating monooxygenase. Reaction mechanism and role of the noncoupled nature of the active site. Chen P; Solomon EI J Am Chem Soc; 2004 Apr; 126(15):4991-5000. PubMed ID: 15080705 [TBL] [Abstract][Full Text] [Related]
28. Artificial Force Induced Reaction (AFIR) Method for Exploring Quantum Chemical Potential Energy Surfaces. Maeda S; Harabuchi Y; Takagi M; Taketsugu T; Morokuma K Chem Rec; 2016 Oct; 16(5):2232-2248. PubMed ID: 27258568 [TBL] [Abstract][Full Text] [Related]
29. Theoretical investigations on the thermal decomposition mechanism of 5-hydroxy-6-hydroperoxy-5,6-dihydrothymidine in water. Chen ZQ; Xue Y J Phys Chem B; 2010 Oct; 114(39):12641-54. PubMed ID: 20839840 [TBL] [Abstract][Full Text] [Related]
30. Effect of Cu loading content on the catalytic performance of Cu-USY catalysts for selective catalytic reduction of NO with NH Wan J; Yang H; Shi Y; Liu Y; Zhang J; Zhang J; Wu G; Zhou R J Environ Sci (China); 2023 Apr; 126():445-458. PubMed ID: 36503771 [TBL] [Abstract][Full Text] [Related]
31. H Xu R; Liu N; Dai C; Li Y; Zhang J; Wu B; Yu G; Chen B Angew Chem Int Ed Engl; 2021 Jul; 60(30):16634-16640. PubMed ID: 33982395 [TBL] [Abstract][Full Text] [Related]
32. Formation of H2O2 on Au20 and Au19Pd clusters: understanding the structure effect on the atomic level. Beletskaya AV; Pichugina DA; Shestakov AF; Kuz'menko NE J Phys Chem A; 2013 Aug; 117(31):6817-26. PubMed ID: 23859501 [TBL] [Abstract][Full Text] [Related]
33. Two-dimensional porphyrin covalent organic frameworks with tunable catalytic active sites for the oxygen reduction reaction. Yue JY; Wang YT; Wu X; Yang P; Ma Y; Liu XH; Tang B Chem Commun (Camb); 2021 Nov; 57(94):12619-12622. PubMed ID: 34757362 [TBL] [Abstract][Full Text] [Related]
34. Understanding the nature of NH Yang G; Ran J; Du X; Wang X; Ran Z; Chen Y; Zhang L; Crittenden J Phys Chem Chem Phys; 2021 Mar; 23(8):4700-4710. PubMed ID: 33595551 [TBL] [Abstract][Full Text] [Related]
35. Theoretical Overview of Methane Hydroxylation by Copper-Oxygen Species in Enzymatic and Zeolitic Catalysts. Mahyuddin MH; Shiota Y; Staykov A; Yoshizawa K Acc Chem Res; 2018 Oct; 51(10):2382-2390. PubMed ID: 30207444 [TBL] [Abstract][Full Text] [Related]
36. On Benchmarking of Automated Methods for Performing Exhaustive Reaction Path Search. Maeda S; Harabuchi Y J Chem Theory Comput; 2019 Apr; 15(4):2111-2115. PubMed ID: 30860828 [TBL] [Abstract][Full Text] [Related]
37. Experimental and theoretical study of multinuclear indium-oxo clusters in CHA zeolite for CH Maeno Z; Yasumura S; Liu C; Toyao T; Kon K; Nakayama A; Hasegawa JY; Shimizu KI Phys Chem Chem Phys; 2019 Jun; 21(25):13415-13427. PubMed ID: 31093622 [TBL] [Abstract][Full Text] [Related]
38. Theoretical Investigation of the Reaction Paths of the Aluminum Cluster Cation with Water Molecule in the Gas Phase: A Facile Route for Dihydrogen Release. Moc J J Phys Chem A; 2015 Aug; 119(32):8683-91. PubMed ID: 26200102 [TBL] [Abstract][Full Text] [Related]
39. A direct dynamics trajectory study of F- + CH(3)OOH reactive collisions reveals a major non-IRC reaction path. López JG; Vayner G; Lourderaj U; Addepalli SV; Kato S; deJong WA; Windus TL; Hase WL J Am Chem Soc; 2007 Aug; 129(32):9976-85. PubMed ID: 17658801 [TBL] [Abstract][Full Text] [Related]
40. Mechanistic insight into peroxo-shunt formation of biomimetic models for compound II, their reactivity toward organic substrates, and the influence of N-methylimidazole axial ligation. Oszajca M; Drzewiecka-Matuszek A; Franke A; Rutkowska-Zbik D; Brindell M; Witko M; Stochel G; van Eldik R Chemistry; 2014 Feb; 20(8):2328-43. PubMed ID: 24443188 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]