BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36883576)

  • 1. Rapid CO2 changes cause oscillations in photosynthesis that implicate PSI acceptor-side limitations.
    McClain AM; Sharkey TD
    J Exp Bot; 2023 May; 74(10):3163-3173. PubMed ID: 36883576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triose phosphate use limitation of photosynthesis: short-term and long-term effects.
    Yang JT; Preiser AL; Li Z; Weise SE; Sharkey TD
    Planta; 2016 Mar; 243(3):687-98. PubMed ID: 26620947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-term salt stress reduces photosynthetic oscillations under triose phosphate utilization limitation in tomato.
    Zhang Y; Kaiser E; Dutta S; Sharkey TD; Marcelis LFM; Li T
    J Exp Bot; 2024 May; 75(10):2994-3008. PubMed ID: 38436737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triose phosphate utilization and beyond: from photosynthesis to end product synthesis.
    McClain AM; Sharkey TD
    J Exp Bot; 2019 Mar; 70(6):1755-1766. PubMed ID: 30868155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Dynamic Assimilation Technique measures photosynthetic CO2 response curves with similar fidelity to steady-state approaches in half the time.
    Tejera-Nieves M; Seong DY; Reist L; Walker BJ
    J Exp Bot; 2024 May; 75(10):2819-2828. PubMed ID: 38366564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The time course of acclimation to the stress of triose phosphate use limitation.
    McClain AM; Cruz JA; Kramer DM; Sharkey TD
    Plant Cell Environ; 2023 Jan; 46(1):64-75. PubMed ID: 36305484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. No evidence for triose phosphate limitation of light-saturated leaf photosynthesis under current atmospheric CO
    Kumarathunge DP; Medlyn BE; Drake JE; Rogers A; Tjoelker MG
    Plant Cell Environ; 2019 Dec; 42(12):3241-3252. PubMed ID: 31378950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the A-Cc curve fitting methods in determining maximum ribulose 1.5-bisphosphate carboxylase/oxygenase carboxylation rate, potential light saturated electron transport rate and leaf dark respiration.
    Miao Z; Xu M; Lathrop RG; Wang Y
    Plant Cell Environ; 2009 Feb; 32(2):109-22. PubMed ID: 19154228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triose phosphate utilization limitation: an unnecessary complexity in terrestrial biosphere model representation of photosynthesis.
    Rogers A; Kumarathunge DP; Lombardozzi DL; Medlyn BE; Serbin SP; Walker AP
    New Phytol; 2021 Apr; 230(1):17-22. PubMed ID: 33217768
    [No Abstract]   [Full Text] [Related]  

  • 10. Triose phosphate utilization in leaves is modulated by whole-plant sink-source ratios and nitrogen budgets in rice.
    Zhou Z; Zhang Z; van der Putten PEL; Fabre D; Dingkuhn M; Struik PC; Yin X
    J Exp Bot; 2023 Nov; 74(21):6692-6707. PubMed ID: 37642225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is triose phosphate utilization involved in the feedback inhibition of photosynthesis in rice under conditions of sink limitation?
    Fabre D; Yin X; Dingkuhn M; Clément-Vidal A; Roques S; Rouan L; Soutiras A; Luquet D
    J Exp Bot; 2019 Oct; 70(20):5773-5785. PubMed ID: 31269202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antagonistic actions of boron against inhibitory effects of aluminum toxicity on growth, CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, and photosynthetic electron transport probed by the JIP-test, of Citrus grandis seedlings.
    Jiang HX; Tang N; Zheng JG; Chen LS
    BMC Plant Biol; 2009 Aug; 9():102. PubMed ID: 19646270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photorespiration is the solution, not the problem.
    Segura Broncano L; Pukacz KR; Reichel-Deland V; Schlüter U; Triesch S; Weber APM
    J Plant Physiol; 2023 Mar; 282():153928. PubMed ID: 36780758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oscillations in levels of metabolites from the photosynthetic carbon reduction cycle in spinach leaf disks generated by the transition from air to 5% CO2.
    Furbank RT; Foyer CH
    Arch Biochem Biophys; 1986 Apr; 246(1):240-4. PubMed ID: 3083774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decrease in leaf sucrose synthesis leads to increased leaf starch turnover and decreased RuBP regeneration-limited photosynthesis but not Rubisco-limited photosynthesis in Arabidopsis null mutants of SPSA1.
    Sun J; Zhang J; Larue CT; Huber SC
    Plant Cell Environ; 2011 Apr; 34(4):592-604. PubMed ID: 21309792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The sensitivity of photosynthesis to O
    Busch FA; Sage RF
    New Phytol; 2017 Feb; 213(3):1036-1051. PubMed ID: 27768823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific reduction of chloroplast glyceraldehyde-3-phosphate dehydrogenase activity by antisense RNA reduces CO2 assimilation via a reduction in ribulose bisphosphate regeneration in transgenic tobacco plants.
    Price GD; Evans JR; von Caemmerer S; Yu JW; Badger MR
    Planta; 1995; 195(3):369-78. PubMed ID: 7766043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cyanobacterial photorespiratory bypass model to enhance photosynthesis by rerouting photorespiratory pathway in C
    Khurshid G; Abbassi AZ; Khalid MF; Gondal MN; Naqvi TA; Shah MM; Chaudhary SU; Ahmad R
    Sci Rep; 2020 Nov; 10(1):20879. PubMed ID: 33257792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole-plant growth and N utilization in transgenic rice plants with increased or decreased Rubisco content under different CO2 partial pressures.
    Sudo E; Suzuki Y; Makino A
    Plant Cell Physiol; 2014 Nov; 55(11):1905-11. PubMed ID: 25231963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transgenic approaches to manipulate the environmental responses of the C3 carbon fixation cycle.
    Raines CA
    Plant Cell Environ; 2006 Mar; 29(3):331-9. PubMed ID: 17080589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.