BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36884144)

  • 1. Broadband long-wave infrared high-absorption of active materials through hybrid plasmonic resonance modes.
    Liu X; Zhang Z; Han C; Wu J; Zhang X; Zhou H; Xie Q; Wang J
    Discov Nano; 2023 Mar; 18(1):35. PubMed ID: 36884144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Perfect Absorber Based on Similar Fabry-Perot Four-Band in the Visible Range.
    Wu P; Zhang C; Tang Y; Liu B; Lv L
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32182723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of metamaterial perfect absorbers in the long-wave infrared region.
    Wang Y; Li X; Wu S; Hu C; Liu Y
    Phys Chem Chem Phys; 2023 Dec; 26(1):551-557. PubMed ID: 38086645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband long-wave infrared metamaterial absorber based on single-sized cut-wire resonators.
    Qin Z; Meng D; Yang F; Shi X; Liang Z; Xu H; Smith DR; Liu Y
    Opt Express; 2021 Jun; 29(13):20275-20285. PubMed ID: 34266120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial.
    Lei L; Li S; Huang H; Tao K; Xu P
    Opt Express; 2018 Mar; 26(5):5686-5693. PubMed ID: 29529770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband infrared plasmonic metamaterial absorber with multipronged absorption mechanisms.
    Fann CH; Zhang J; ElKabbash M; Donaldson WR; Michael Campbell E; Guo C
    Opt Express; 2019 Sep; 27(20):27917-27926. PubMed ID: 31684552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-mode plasmonic resonance broadband LWIR metamaterial absorber based on lossy metal ring.
    Qin Z; Shi X; Yang F; Hou E; Meng D; Sun C; Dai R; Zhang S; Liu H; Xu H; Liang Z
    Opt Express; 2022 Jan; 30(1):473-483. PubMed ID: 35201223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultraviolet broadband plasmonic absorber with dual visible and near-infrared narrow bands.
    Gao H; Zhou D; Cui W; Liu Z; Liu Y; Jing Z; Peng W
    J Opt Soc Am A Opt Image Sci Vis; 2019 Feb; 36(2):264-269. PubMed ID: 30874104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wide-Angle Polarization-Independent Ultra-Broadband Absorber from Visible to Infrared.
    Liu J; Chen W; Zheng JC; Chen YS; Yang CF
    Nanomaterials (Basel); 2019 Dec; 10(1):. PubMed ID: 31861856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near Perfect Absorber for Long-Wave Infrared Based on Localized Surface Plasmon Resonance.
    Sun L; Liu D; Su J; Li X; Zhou S; Wang K; Zhang Q
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of ultra-broadband absorption enhancement in plasmonic absorber by interaction resonance of multi-plasmon modes and Fabry-Perot mode.
    Zeng L; Zhang X; Ye H; Dong H; Zhang H
    Opt Express; 2021 Aug; 29(18):29228-29241. PubMed ID: 34615037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Dual-Band Guided Laser Absorber Based on Plasmonic Resonance and Fabry-Pérot Resonance.
    Liao X; Zeng J; Zhang Y; He X; Yang J
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible and Near-Infrared Broadband Absorber Based on Ti
    Jia Y; Wu T; Wang G; Jiang J; Miao F; Gao Y
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths.
    Nguyen DM; Lee D; Rho J
    Sci Rep; 2017 Jun; 7(1):2611. PubMed ID: 28572672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reverse design of metamaterial absorbers based on an equivalent circuit.
    Wang Y; Xuan X; Wu S; Zhu L; Zhu J; Shen X; Zhang Z; Hu C
    Phys Chem Chem Phys; 2022 Aug; 24(34):20390-20399. PubMed ID: 35983852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarization-dependent broadband absorber based on composite metamaterials in the long-wavelength infrared range.
    Yu H; Meng D; Liang Z; Xu H; Qin Z; Su X; Smith DR; Liu Y
    Opt Express; 2021 Oct; 29(22):36111-36120. PubMed ID: 34809030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-broadband perfect absorber using triple-layer nanofilm in a long-wave near-infrared regime.
    Kuang K; Wang Q; Yuan X; Yu L; Liang Y; Zhang Y; Peng W
    Appl Opt; 2022 Sep; 61(26):7706-7712. PubMed ID: 36256371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of an ultra-broadband near-perfect bilayer grating metamaterial absorber based on genetic algorithm.
    Cai H; Sun Y; Wang X; Zhan S
    Opt Express; 2020 May; 28(10):15347-15359. PubMed ID: 32403564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals.
    Ding F; Dai J; Chen Y; Zhu J; Jin Y; Bozhevolnyi SI
    Sci Rep; 2016 Dec; 6():39445. PubMed ID: 28000718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D metamaterial ultra-wideband absorber for curved surface.
    Norouzi M; Jarchi S; Ghaffari-Miab M; Esfandiari M; Lalbakhsh A; Koziel S; Reisenfeld S; Moloudian G
    Sci Rep; 2023 Jan; 13(1):1043. PubMed ID: 36658245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.