These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. The role of changes in mechanical usage set points in the pathogenesis of osteoporosis. Frost HM J Bone Miner Res; 1992 Mar; 7(3):253-61. PubMed ID: 1585826 [TBL] [Abstract][Full Text] [Related]
7. Reduced bone formation and increased bone resorption: rational targets for the treatment of osteoporosis. Seeman E Osteoporos Int; 2003; 14 Suppl 3():S2-8. PubMed ID: 12730770 [TBL] [Abstract][Full Text] [Related]
8. Adaptation of diaphyseal structure with aging and increased mechanical usage in the adult rat: a histomorphometrical and biomechanical study. Jee WS; Li XJ; Schaffler MB Anat Rec; 1991 Jul; 230(3):332-8. PubMed ID: 1867408 [TBL] [Abstract][Full Text] [Related]
10. Animal models of immobilization osteopenia. Jee WS; Ma Y Morphologie; 1999 Jun; 83(261):25-34. PubMed ID: 10546233 [TBL] [Abstract][Full Text] [Related]
11. One mechanostat or many? Modifications of the site-specific response of bone to mechanical loading by nature and nurture. Skerry TM J Musculoskelet Neuronal Interact; 2006; 6(2):122-7. PubMed ID: 16849820 [TBL] [Abstract][Full Text] [Related]
13. [Anisotropic bone remodeling model with mechanostat]. Zhu D; Ma Z; Ma W; Dong X; Zhu X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Jun; 23(3):525-9. PubMed ID: 16856383 [TBL] [Abstract][Full Text] [Related]
14. The benefit of combining non-mechanical agents with mechanical loading: a perspective based on the Utah Paradigm of Skeletal Physiology. Jee WS; Tian XY J Musculoskelet Neuronal Interact; 2005 Jun; 5(2):110-8. PubMed ID: 15951626 [TBL] [Abstract][Full Text] [Related]
15. Wolff's Law and bone's structural adaptations to mechanical usage: an overview for clinicians. Frost HM Angle Orthod; 1994; 64(3):175-88. PubMed ID: 8060014 [TBL] [Abstract][Full Text] [Related]
16. [Simulation on the process of female osteoporosis and its prevention by physical activity]. Ma Z; Li S; Zhu X; Gong H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):124-8. PubMed ID: 17333905 [TBL] [Abstract][Full Text] [Related]
17. Biomechanical background for a noninvasive assessment of bone strength and muscle-bone interactions. Cointry GR; Capozza RF; Negri AL; Roldán EJ; Ferretti JL J Musculoskelet Neuronal Interact; 2004 Mar; 4(1):1-11. PubMed ID: 15615073 [TBL] [Abstract][Full Text] [Related]
18. An algorithm for bone mechanoresponsiveness: implementation to study the effect of patient-specific cell mechanosensitivity on trabecular bone loss. Mulvihill BM; Prendergast PJ Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):443-51. PubMed ID: 18608340 [TBL] [Abstract][Full Text] [Related]
19. Proposal for the regulatory mechanism of Wolff's law. Mullender MG; Huiskes R J Orthop Res; 1995 Jul; 13(4):503-12. PubMed ID: 7674066 [TBL] [Abstract][Full Text] [Related]
20. The effect of exercise and nutrition on the mechanostat. Bass SL; Eser P; Daly R J Musculoskelet Neuronal Interact; 2005; 5(3):239-54. PubMed ID: 16172515 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]