These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36888698)

  • 1. A simple catch: Fluctuations enable hydrodynamic trapping of microrollers by obstacles.
    van der Wee EB; Blackwell BC; Balboa Usabiaga F; Sokolov A; Katz IT; Delmotte B; Driscoll MM
    Sci Adv; 2023 Mar; 9(10):eade0320. PubMed ID: 36888698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geometric capture and escape of a microswimmer colliding with an obstacle.
    Spagnolie SE; Moreno-Flores GR; Bartolo D; Lauga E
    Soft Matter; 2015 May; 11(17):3396-411. PubMed ID: 25800455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced rotational flows enable the translation of surface-rolling microrobots in confined spaces.
    Bozuyuk U; Aghakhani A; Alapan Y; Yunusa M; Wrede P; Sitti M
    Nat Commun; 2022 Oct; 13(1):6289. PubMed ID: 36271078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional surface microrollers for targeted cargo delivery in physiological blood flow.
    Alapan Y; Bozuyuk U; Erkoc P; Karacakol AC; Sitti M
    Sci Robot; 2020 May; 5(42):. PubMed ID: 33022624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collective hydrodynamic transport of magnetic microrollers.
    Junot G; Cebers A; Tierno P
    Soft Matter; 2021 Oct; 17(38):8605-8611. PubMed ID: 34614055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brownian motion of a circle swimmer in a harmonic trap.
    Jahanshahi S; Löwen H; Ten Hagen B
    Phys Rev E; 2017 Feb; 95(2-1):022606. PubMed ID: 28297979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamical density functional theory for microswimmers.
    Menzel AM; Saha A; Hoell C; Löwen H
    J Chem Phys; 2016 Jan; 144(2):024115. PubMed ID: 26772562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Driven dynamics in dense suspensions of microrollers.
    Sprinkle B; van der Wee EB; Luo Y; Driscoll MM; Donev A
    Soft Matter; 2020 Sep; 16(34):7982-8001. PubMed ID: 32776032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic-based hydrodynamic trap for single particles.
    Johnson-Chavarria EM; Tanyeri M; Schroeder CM
    J Vis Exp; 2011 Jan; (47):. PubMed ID: 21304467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape anisotropy-governed locomotion of surface microrollers on vessel-like microtopographies against physiological flows.
    Bozuyuk U; Alapan Y; Aghakhani A; Yunusa M; Sitti M
    Proc Natl Acad Sci U S A; 2021 Mar; 118(13):. PubMed ID: 33753497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow properties and hydrodynamic interactions of rigid spherical microswimmers.
    Adhyapak TC; Jabbari-Farouji S
    Phys Rev E; 2017 Nov; 96(5-1):052608. PubMed ID: 29347781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trapping of swimmers in a vortex lattice.
    Berman SA; Mitchell KA
    Chaos; 2020 Jun; 30(6):063121. PubMed ID: 32611071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unveiling the Rolling to Kayak Transition in Propelling Nanorods with Cargo Trapping and Pumping.
    Junot G; Calero C; García-Torres J; Pagonabarraga I; Tierno P
    Nano Lett; 2023 Feb; 23(3):850-857. PubMed ID: 36689916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Getting drowned in a swirl: Deformable bead-spring model microswimmers in external flow fields.
    Küchler N; Löwen H; Menzel AM
    Phys Rev E; 2016 Feb; 93(2):022610. PubMed ID: 26986380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic oscillations and variable swimming speed in squirmers close to repulsive walls.
    Lintuvuori JS; Brown AT; Stratford K; Marenduzzo D
    Soft Matter; 2016 Sep; 12(38):7959-7968. PubMed ID: 27714374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of microswimmers from passive Brownian particles in a spherically aberrated optical trap.
    Mondal A; Roy B; Banerjee A
    Opt Express; 2015 Mar; 23(6):8021-8. PubMed ID: 25837140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional motion of Brownian swimmers in linear flows.
    Sandoval M; Jimenez A
    J Biol Phys; 2016 Mar; 42(2):199-212. PubMed ID: 26428909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can the self-propulsion of anisotropic microswimmers be described by using forces and torques?
    ten Hagen B; Wittkowski R; Takagi D; Kümmel F; Bechinger C; Löwen H
    J Phys Condens Matter; 2015 May; 27(19):194110. PubMed ID: 25923010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of interfilament hydrodynamic interaction on swimming performance of two-filament microswimmers.
    Singh TS; Singh P; Yadava RDS
    Soft Matter; 2018 Sep; 14(37):7748-7758. PubMed ID: 30206610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quasi-two-dimensional bacterial swimming around pillars: Enhanced trapping efficiency and curvature dependence.
    Takaha Y; Nishiguchi D
    Phys Rev E; 2023 Jan; 107(1-1):014602. PubMed ID: 36797855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.