These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Collective hydrodynamic transport of magnetic microrollers. Junot G; Cebers A; Tierno P Soft Matter; 2021 Oct; 17(38):8605-8611. PubMed ID: 34614055 [TBL] [Abstract][Full Text] [Related]
6. Brownian motion of a circle swimmer in a harmonic trap. Jahanshahi S; Löwen H; Ten Hagen B Phys Rev E; 2017 Feb; 95(2-1):022606. PubMed ID: 28297979 [TBL] [Abstract][Full Text] [Related]
7. The mismatch between experimental and computational fluid dynamics analyses for magnetic surface microrollers. Bozuyuk U; Ozturk H; Sitti M Sci Rep; 2023 Jun; 13(1):10196. PubMed ID: 37353527 [TBL] [Abstract][Full Text] [Related]
8. Dynamical density functional theory for microswimmers. Menzel AM; Saha A; Hoell C; Löwen H J Chem Phys; 2016 Jan; 144(2):024115. PubMed ID: 26772562 [TBL] [Abstract][Full Text] [Related]
9. Driven dynamics in dense suspensions of microrollers. Sprinkle B; van der Wee EB; Luo Y; Driscoll MM; Donev A Soft Matter; 2020 Sep; 16(34):7982-8001. PubMed ID: 32776032 [TBL] [Abstract][Full Text] [Related]
10. Size-Dependent Locomotion Ability of Surface Microrollers on Physiologically Relevant Microtopographical Surfaces. Bozuyuk U; Yildiz E; Han M; Demir SO; Sitti M Small; 2023 Nov; 19(47):e2303396. PubMed ID: 37488686 [TBL] [Abstract][Full Text] [Related]
11. A microfluidic-based hydrodynamic trap for single particles. Johnson-Chavarria EM; Tanyeri M; Schroeder CM J Vis Exp; 2011 Jan; (47):. PubMed ID: 21304467 [TBL] [Abstract][Full Text] [Related]
12. Shape anisotropy-governed locomotion of surface microrollers on vessel-like microtopographies against physiological flows. Bozuyuk U; Alapan Y; Aghakhani A; Yunusa M; Sitti M Proc Natl Acad Sci U S A; 2021 Mar; 118(13):. PubMed ID: 33753497 [TBL] [Abstract][Full Text] [Related]
13. Flow properties and hydrodynamic interactions of rigid spherical microswimmers. Adhyapak TC; Jabbari-Farouji S Phys Rev E; 2017 Nov; 96(5-1):052608. PubMed ID: 29347781 [TBL] [Abstract][Full Text] [Related]
14. Trapping of swimmers in a vortex lattice. Berman SA; Mitchell KA Chaos; 2020 Jun; 30(6):063121. PubMed ID: 32611071 [TBL] [Abstract][Full Text] [Related]
15. Unveiling the Rolling to Kayak Transition in Propelling Nanorods with Cargo Trapping and Pumping. Junot G; Calero C; García-Torres J; Pagonabarraga I; Tierno P Nano Lett; 2023 Feb; 23(3):850-857. PubMed ID: 36689916 [TBL] [Abstract][Full Text] [Related]
16. Dispersion of run-and-tumble microswimmers through disordered media. Saintillan D Phys Rev E; 2023 Dec; 108(6-1):064608. PubMed ID: 38243487 [TBL] [Abstract][Full Text] [Related]
17. Getting drowned in a swirl: Deformable bead-spring model microswimmers in external flow fields. Küchler N; Löwen H; Menzel AM Phys Rev E; 2016 Feb; 93(2):022610. PubMed ID: 26986380 [TBL] [Abstract][Full Text] [Related]
18. Propulsion of a three-sphere microrobot in a porous medium. Liao CT; Lemus A; Gürbüz A; Tsang ACH; Pak OS; Daddi-Moussa-Ider A Phys Rev E; 2024 Jun; 109(6-2):065106. PubMed ID: 39020945 [TBL] [Abstract][Full Text] [Related]
19. Hydrodynamic oscillations and variable swimming speed in squirmers close to repulsive walls. Lintuvuori JS; Brown AT; Stratford K; Marenduzzo D Soft Matter; 2016 Sep; 12(38):7959-7968. PubMed ID: 27714374 [TBL] [Abstract][Full Text] [Related]
20. Generation of microswimmers from passive Brownian particles in a spherically aberrated optical trap. Mondal A; Roy B; Banerjee A Opt Express; 2015 Mar; 23(6):8021-8. PubMed ID: 25837140 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]