These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36888720)

  • 1. Biomimetic oxidative copolymerization of hydroxystilbenes and monolignols.
    Kim H; Rencoret J; Elder TJ; Del Río JC; Ralph J
    Sci Adv; 2023 Mar; 9(10):eade5519. PubMed ID: 36888720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroxystilbenes Are Monomers in Palm Fruit Endocarp Lignins.
    Carlos Del Río J; Rencoret J; Gutiérrez A; Kim H; Ralph J
    Plant Physiol; 2017 Aug; 174(4):2072-2082. PubMed ID: 28588115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxycinnamate conjugates as potential monolignol replacements: in vitro lignification and cell wall studies with rosmarinic acid.
    Tobimatsu Y; Elumalai S; Grabber JH; Davidson CL; Pan X; Ralph J
    ChemSusChem; 2012 Apr; 5(4):676-86. PubMed ID: 22359379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroxystilbene Glucosides Are Incorporated into Norway Spruce Bark Lignin.
    Rencoret J; Neiva D; Marques G; Gutiérrez A; Kim H; Gominho J; Pereira H; Ralph J; Del Río JC
    Plant Physiol; 2019 Jul; 180(3):1310-1321. PubMed ID: 31023874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radical coupling reactions of piceatannol and monolignols: A density functional theory study.
    Elder T; Carlos Del Río J; Ralph J; Rencoret J; Kim H; Beckham GT
    Phytochemistry; 2019 Aug; 164():12-23. PubMed ID: 31060026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxycinnamaldehyde-derived benzofuran components in lignins.
    Yoshioka K; Kim H; Lu F; De Ridder N; Vanholme R; Kajita S; Boerjan W; Ralph J
    Plant Physiol; 2024 Feb; 194(3):1370-1382. PubMed ID: 37773018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic profile of Arabidopsis peroxidases, AtPrx-2, 25 and 71, contributing to stem lignification.
    Shigeto J; Nagano M; Fujita K; Tsutsumi Y
    PLoS One; 2014; 9(8):e105332. PubMed ID: 25137070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of hemicelluloses on dehydrogenative polymerization of monolignols with cationic cell wall-bound peroxidase.
    Lyu Y; Suzuki S; Nagano H; Shigetomi K; Tamai Y; Tsutsumi Y; Uraki Y
    Carbohydr Polym; 2023 Feb; 301(Pt A):120305. PubMed ID: 36436868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic Oxidation of Monolignol Acetate and
    Yamashita A; Kishimoto T; Hamada M; Nakajima N; Urabe D
    J Agric Food Chem; 2020 Feb; 68(7):2124-2131. PubMed ID: 31985223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling lignin polymerization. I. Simulation model of dehydrogenation polymers.
    van Parijs FR; Morreel K; Ralph J; Boerjan W; Merks RM
    Plant Physiol; 2010 Jul; 153(3):1332-44. PubMed ID: 20472753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peroxidases Bound to the Growing Lignin Polymer Produce Natural Like Extracellular Lignin in a Cell Culture of Norway Spruce.
    Warinowski T; Koutaniemi S; Kärkönen A; Sundberg I; Toikka M; Simola LK; Kilpeläinen I; Teeri TH
    Front Plant Sci; 2016; 7():1523. PubMed ID: 27803704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tricin, a flavonoid monomer in monocot lignification.
    Lan W; Lu F; Regner M; Zhu Y; Rencoret J; Ralph SA; Zakai UI; Morreel K; Boerjan W; Ralph J
    Plant Physiol; 2015 Apr; 167(4):1284-95. PubMed ID: 25667313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence-tagged monolignols: synthesis, and application to studying in vitro lignification.
    Tobimatsu Y; Davidson CL; Grabber JH; Ralph J
    Biomacromolecules; 2011 May; 12(5):1752-61. PubMed ID: 21410250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity.
    Anterola AM; Lewis NG
    Phytochemistry; 2002 Oct; 61(3):221-94. PubMed ID: 12359514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of syringyl-rich lignins in maize as influenced by feruloylated xylans and p-coumaroylated monolignols.
    Grabber JH; Lu F
    Planta; 2007 Aug; 226(3):741-51. PubMed ID: 17457604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A polymer of caffeyl alcohol in plant seeds.
    Chen F; Tobimatsu Y; Havkin-Frenkel D; Dixon RA; Ralph J
    Proc Natl Acad Sci U S A; 2012 Jan; 109(5):1772-7. PubMed ID: 22307645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR analysis of lignins in CAD-deficient plants. Part 1. Incorporation of hydroxycinnamaldehydes and hydroxybenzaldehydes into lignins.
    Kim H; Ralph J; Lu F; Ralph SA; Boudet AM; MacKay JJ; Sederoff RR; Ito T; Kawai S; Ohashi H; Higuchi T
    Org Biomol Chem; 2003 Jan; 1(2):268-81. PubMed ID: 12929422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of coumaryl alcohol incorporation on the structure and composition of lignin dehydrogenation polymers.
    Harman-Ware AE; Happs RM; Davison BH; Davis MF
    Biotechnol Biofuels; 2017; 10():281. PubMed ID: 29213321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying new lignin bioengineering targets: 1. Monolignol-substitute impacts on lignin formation and cell wall fermentability.
    Grabber JH; Schatz PF; Kim H; Lu F; Ralph J
    BMC Plant Biol; 2010 Jun; 10():114. PubMed ID: 20565789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation and polymerization of monolignols by Abortiporus biennis, and induction of its degradation with a reducing agent.
    Hong CY; Park SY; Kim SH; Lee SY; Choi WS; Choi IG
    J Microbiol; 2016 Oct; 54(10):675-85. PubMed ID: 27687230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.