These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 36889026)

  • 21. Comparison and evaluation of network clustering algorithms applied to genetic interaction networks.
    Hou L; Wang L; Berg A; Qian M; Zhu Y; Li F; Deng M
    Front Biosci (Elite Ed); 2012 Jan; 4(6):2150-61. PubMed ID: 22202027
    [TBL] [Abstract][Full Text] [Related]  

  • 22. HiSCF: leveraging higher-order structures for clustering analysis in biological networks.
    Hu L; Zhang J; Pan X; Yan H; You ZH
    Bioinformatics; 2021 May; 37(4):542-550. PubMed ID: 32931549
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integration of multi-omics data to mine cancer-related gene modules.
    Li P; Guo M; Sun B
    J Bioinform Comput Biol; 2019 Dec; 17(6):1950038. PubMed ID: 32019413
    [TBL] [Abstract][Full Text] [Related]  

  • 24. HTINet2: herb-target prediction via knowledge graph embedding and residual-like graph neural network.
    Duan P; Yang K; Su X; Fan S; Dong X; Zhang F; Li X; Xing X; Zhu Q; Yu J; Zhou X
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39175133
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graph Neural Networks With Multiple Prior Knowledge for Multi-Omics Data Analysis.
    Xiao S; Lin H; Wang C; Wang S; Rajapakse JC
    IEEE J Biomed Health Inform; 2023 Sep; 27(9):4591-4600. PubMed ID: 37307177
    [TBL] [Abstract][Full Text] [Related]  

  • 26. K-Module Algorithm: An Additional Step to Improve the Clustering Results of WGCNA Co-Expression Networks.
    Hou J; Ye X; Li C; Wang Y
    Genes (Basel); 2021 Jan; 12(1):. PubMed ID: 33445666
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deepgmd: A Graph-Neural-Network-Based Method to Detect Gene Regulator Module.
    Ye X; Wu Y; Pi J; Li H; Liu B; Wang Y; Li J
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3366-3373. PubMed ID: 34546926
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-view spectral clustering with latent representation learning for applications on multi-omics cancer subtyping.
    Ge S; Liu J; Cheng Y; Meng X; Wang X
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36445207
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data.
    Zhang J; Zhang S; Wang Y; Zhang XS
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Arabidopsis gene co-expression network and its functional modules.
    Mao L; Van Hemert JL; Dash S; Dickerson JA
    BMC Bioinformatics; 2009 Oct; 10():346. PubMed ID: 19845953
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A functional gene module identification algorithm in gene expression data based on genetic algorithm and gene ontology.
    Zhang Y; Shi W; Sun Y
    BMC Genomics; 2023 Feb; 24(1):76. PubMed ID: 36797662
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spectral embedding network for attributed graph clustering.
    Zhang X; Liu H; Wu XM; Zhang X; Liu X
    Neural Netw; 2021 Oct; 142():388-396. PubMed ID: 34139655
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SNFM: A semi-supervised NMF algorithm for detecting biological functional modules.
    Man YT; Liu GM; Yang K; Zhou XZ
    Math Biosci Eng; 2019 Mar; 16(4):1933-1948. PubMed ID: 31137193
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TPSC: a module detection method based on topology potential and spectral clustering in weighted networks and its application in gene co-expression module discovery.
    Liu Y; Ye X; Yu CY; Shao W; Hou J; Feng W; Zhang J; Huang K
    BMC Bioinformatics; 2021 Oct; 22(Suppl 4):111. PubMed ID: 34689740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assembling spatial clustering framework for heterogeneous spatial transcriptomics data with GRAPHDeep.
    Liu T; Fang Z; Li X; Zhang L; Cao DS; Li M; Yin M
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38243703
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of single and module-based methods for modeling gene regulatory networks.
    Hernaez M; Blatti C; Gevaert O
    Bioinformatics; 2020 Jan; 36(2):558-567. PubMed ID: 31287491
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regularized Multi-View Subspace Clustering for Common Modules Across Cancer Stages.
    Zhang E; Ma X
    Molecules; 2018 Apr; 23(5):. PubMed ID: 29701681
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MultiGATAE: A Novel Cancer Subtype Identification Method Based on Multi-Omics and Attention Mechanism.
    Zhang G; Peng Z; Yan C; Wang J; Luo J; Luo H
    Front Genet; 2022; 13():855629. PubMed ID: 35391797
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identifying cancer driver genes based on multi-view heterogeneous graph convolutional network and self-attention mechanism.
    Peng W; Wu R; Dai W; Yu N
    BMC Bioinformatics; 2023 Jan; 24(1):16. PubMed ID: 36639646
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multi-cancer samples clustering via graph regularized low-rank representation method under sparse and symmetric constraints.
    Wang J; Lu CH; Liu JX; Dai LY; Kong XZ
    BMC Bioinformatics; 2019 Dec; 20(Suppl 22):718. PubMed ID: 31888442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.