These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 36889189)
1. In situ synthesis of Cu nanoclusters/CeO Wang D; Nie Y; Wang P; Ma Q Talanta; 2023 Jun; 258():124400. PubMed ID: 36889189 [TBL] [Abstract][Full Text] [Related]
2. High electrochemical active Au-NP/2D zinc-metal organic frameworks heterostructure-based ECL sensor for the miRNA-522 detection in triple negative breast cancer. Zhong W; Zhang Y; Zhao H; Liang Z; Shi J; Ma Q Talanta; 2023 Dec; 265():124875. PubMed ID: 37393716 [TBL] [Abstract][Full Text] [Related]
3. The controllable assembly of Cu nanocluster-based aggregation induced ECL strategy for miRNA detection. Wang D; Nie Y; Li Z; Ma Q Anal Chim Acta; 2023 Jan; 1238():340607. PubMed ID: 36464432 [TBL] [Abstract][Full Text] [Related]
4. Gold Nanorod Vertical Array-Based Electrochemiluminescence Polarization Assay for Triple-Negative Breast Cancer Detection. Liang Z; Zhao J; Wang P; Nie Y; Xu S; Ma Q Anal Chem; 2022 Jan; 94(2):1221-1229. PubMed ID: 34965090 [TBL] [Abstract][Full Text] [Related]
5. Nanocluster/metal-organic framework nanosheet-based confined ECL enhancement biosensor for the extracellular vesicle detection. Ma F; Li W; Wang P; Ma Q Anal Chim Acta; 2024 May; 1301():342488. PubMed ID: 38553118 [TBL] [Abstract][Full Text] [Related]
6. An off-on electrochemiluminescence detection for microRNAs based on TiO Dai P; Ke J; Xie C; Wei L; Zhang Y; He Y; Chen L; Jin J Anal Bioanal Chem; 2020 Sep; 412(23):5779-5787. PubMed ID: 32648106 [TBL] [Abstract][Full Text] [Related]
7. The luminescent Nb Li Y; Wang P; Wang H; Li Z; Liang Z; Ma Q Talanta; 2024 Nov; 279():126627. PubMed ID: 39079436 [TBL] [Abstract][Full Text] [Related]
8. An ultrasensitive signal-on electrochemiluminescence biosensor based on Au nanoclusters for detecting acetylthiocholine. Zhang C; Fan Y; Zhang H; Chen S; Yuan R Anal Bioanal Chem; 2019 Feb; 411(4):905-913. PubMed ID: 30565170 [TBL] [Abstract][Full Text] [Related]
9. An ultrasensitive electrochemiluminescence biosensor for detection of MicroRNA by in-situ electrochemically generated copper nanoclusters as luminophore and TiO Liao H; Zhou Y; Chai Y; Yuan R Biosens Bioelectron; 2018 Aug; 114():10-14. PubMed ID: 29775853 [TBL] [Abstract][Full Text] [Related]
10. Construction of self-enhanced luminescence probes based on Ti Wei Z; Zhang H; Zhang F; Xia J; Meng Q; Huang H; Wang Z Biosens Bioelectron; 2024 Jul; 256():116236. PubMed ID: 38608494 [TBL] [Abstract][Full Text] [Related]
11. Enhanced electrochemiluminescence of gold nanoclusters via silver doping and their application for ultrasensitive detection of dopamine. Tang Y; Xu J; Xiong C; Xiao Y; Zhang X; Wang S Analyst; 2019 Apr; 144(8):2643-2648. PubMed ID: 30839993 [TBL] [Abstract][Full Text] [Related]
12. Cu superparticle-based aggregation induced enhancement strategy with PVDF-HFP/CeVO Ji F; Wang P; Li Z; Ji K; Wang D; Ma Q Talanta; 2024 Aug; 276():126289. PubMed ID: 38776779 [TBL] [Abstract][Full Text] [Related]
13. In Situ Controllable Generation of Copper Nanoclusters Confined in a Poly-l-Cysteine Porous Film with Enhanced Electrochemiluminescence for Alkaline Phosphatase Detection. Pan MC; Lei YM; Chai YQ; Yuan R; Zhuo Y Anal Chem; 2020 Oct; 92(19):13581-13587. PubMed ID: 32893627 [TBL] [Abstract][Full Text] [Related]
14. Unique Electron-Transfer-Mediated Electrochemiluminescence of AuPt Bimetallic Nanoclusters and the Application in Cancer Immunoassay. Zhou H; Liu R; Pan G; Cao M; Zhang L Biosensors (Basel); 2023 May; 13(5):. PubMed ID: 37232911 [TBL] [Abstract][Full Text] [Related]
15. Ultra-Sensitive MicroRNA Biosensor Based on Strong Aggregation-Induced Electrochemiluminescence from Bidentate Ligand-Stabilized Copper Nanoclusters in Polymer Hydrogel. Zhu X; Liu L; Cao W; Yuan R; Wang H Anal Chem; 2023 Apr; 95(13):5553-5560. PubMed ID: 36947675 [TBL] [Abstract][Full Text] [Related]
16. Electrochemiluminescent quaternary Cu-Zn-In-S nanocrystals as a sensing platform: Enzyme-free and sensitive detection of the FLT3 gene based on triple signal amplification. Sun Y; Wu X; Zhang K; Ren Q; Xie R Biosens Bioelectron; 2018 Feb; 100():445-452. PubMed ID: 28961547 [TBL] [Abstract][Full Text] [Related]
17. CeO Cheng W; Lin Z; Zhao L; Fan N; Bai H; Cheng W; Zhao M; Ding S Biosens Bioelectron; 2022 Aug; 210():114287. PubMed ID: 35500311 [TBL] [Abstract][Full Text] [Related]
18. Construction of a Cytosine-Adjusted Electrochemiluminescence Resonance Energy Transfer System for MicroRNA Detection. Feng Q; Wang M; Zhao X; Wang P Langmuir; 2018 Aug; 34(34):10153-10162. PubMed ID: 30068082 [TBL] [Abstract][Full Text] [Related]
19. Highly sensitive electrochemiluminescence detection of single-nucleotide polymorphisms based on isothermal cycle-assisted triple-stem probe with dual-nanoparticle label. Zhou H; Liu J; Xu JJ; Chen HY Anal Chem; 2011 Nov; 83(21):8320-8. PubMed ID: 21923133 [TBL] [Abstract][Full Text] [Related]
20. Zinc-doping enhanced cadmium sulfide electrochemiluminescence behavior based on Au-Cu alloy nanocrystals quenching for insulin detection. Zhu W; Wang C; Li X; Khan MS; Sun X; Ma H; Fan D; Wei Q Biosens Bioelectron; 2017 Nov; 97():115-121. PubMed ID: 28582706 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]