BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 36889206)

  • 1. Comparative validation of machine learning algorithms for surgical workflow and skill analysis with the HeiChole benchmark.
    Wagner M; Müller-Stich BP; Kisilenko A; Tran D; Heger P; Mündermann L; Lubotsky DM; Müller B; Davitashvili T; Capek M; Reinke A; Reid C; Yu T; Vardazaryan A; Nwoye CI; Padoy N; Liu X; Lee EJ; Disch C; Meine H; Xia T; Jia F; Kondo S; Reiter W; Jin Y; Long Y; Jiang M; Dou Q; Heng PA; Twick I; Kirtac K; Hosgor E; Bolmgren JL; Stenzel M; von Siemens B; Zhao L; Ge Z; Sun H; Xie D; Guo M; Liu D; Kenngott HG; Nickel F; Frankenberg MV; Mathis-Ullrich F; Kopp-Schneider A; Maier-Hein L; Speidel S; Bodenstedt S
    Med Image Anal; 2023 May; 86():102770. PubMed ID: 36889206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CholecTriplet2021: A benchmark challenge for surgical action triplet recognition.
    Nwoye CI; Alapatt D; Yu T; Vardazaryan A; Xia F; Zhao Z; Xia T; Jia F; Yang Y; Wang H; Yu D; Zheng G; Duan X; Getty N; Sanchez-Matilla R; Robu M; Zhang L; Chen H; Wang J; Wang L; Zhang B; Gerats B; Raviteja S; Sathish R; Tao R; Kondo S; Pang W; Ren H; Abbing JR; Sarhan MH; Bodenstedt S; Bhasker N; Oliveira B; Torres HR; Ling L; Gaida F; Czempiel T; Vilaça JL; Morais P; Fonseca J; Egging RM; Wijma IN; Qian C; Bian G; Li Z; Balasubramanian V; Sheet D; Luengo I; Zhu Y; Ding S; Aschenbrenner JA; van der Kar NE; Xu M; Islam M; Seenivasan L; Jenke A; Stoyanov D; Mutter D; Mascagni P; Seeliger B; Gonzalez C; Padoy N
    Med Image Anal; 2023 May; 86():102803. PubMed ID: 37004378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensor-based machine learning for workflow detection and as key to detect expert level in laparoscopic suturing and knot-tying.
    Kowalewski KF; Garrow CR; Schmidt MW; Benner L; Müller-Stich BP; Nickel F
    Surg Endosc; 2019 Nov; 33(11):3732-3740. PubMed ID: 30790048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine and deep learning for workflow recognition during surgery.
    Padoy N
    Minim Invasive Ther Allied Technol; 2019 Apr; 28(2):82-90. PubMed ID: 30849261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated operative workflow analysis of endoscopic pituitary surgery using machine learning: development and preclinical evaluation (IDEAL stage 0).
    Khan DZ; Luengo I; Barbarisi S; Addis C; Culshaw L; Dorward NL; Haikka P; Jain A; Kerr K; Koh CH; Layard Horsfall H; Muirhead W; Palmisciano P; Vasey B; Stoyanov D; Marcus HJ
    J Neurosurg; 2022 Jul; 137(1):51-58. PubMed ID: 34740198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated laparoscopic colorectal surgery workflow recognition using artificial intelligence: Experimental research.
    Kitaguchi D; Takeshita N; Matsuzaki H; Oda T; Watanabe M; Mori K; Kobayashi E; Ito M
    Int J Surg; 2020 Jul; 79():88-94. PubMed ID: 32413503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning for Surgical Phase Recognition: A Systematic Review.
    Garrow CR; Kowalewski KF; Li L; Wagner M; Schmidt MW; Engelhardt S; Hashimoto DA; Kenngott HG; Bodenstedt S; Speidel S; Müller-Stich BP; Nickel F
    Ann Surg; 2021 Apr; 273(4):684-693. PubMed ID: 33201088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surgical workflow recognition with temporal convolution and transformer for action segmentation.
    Zhang B; Goel B; Sarhan MH; Goel VK; Abukhalil R; Kalesan B; Stottler N; Petculescu S
    Int J Comput Assist Radiol Surg; 2023 Apr; 18(4):785-794. PubMed ID: 36542253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bringing Artificial Intelligence to the operating room: edge computing for real-time surgical phase recognition.
    Choksi S; Szot S; Zang C; Yarali K; Cao Y; Ahmad F; Xiang Z; Bitner DP; Kostic Z; Filicori F
    Surg Endosc; 2023 Nov; 37(11):8778-8784. PubMed ID: 37580578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial intelligence-based automated laparoscopic cholecystectomy surgical phase recognition and analysis.
    Cheng K; You J; Wu S; Chen Z; Zhou Z; Guan J; Peng B; Wang X
    Surg Endosc; 2022 May; 36(5):3160-3168. PubMed ID: 34231066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A surgical activity model of laparoscopic cholecystectomy for co-operation with collaborative robots.
    Younis R; Yamlahi A; Bodenstedt S; Scheikl PM; Kisilenko A; Daum M; Schulze A; Wise PA; Nickel F; Mathis-Ullrich F; Maier-Hein L; Müller-Stich BP; Speidel S; Distler M; Weitz J; Wagner M
    Surg Endosc; 2024 Jun; ():. PubMed ID: 38872018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AIxSuture: vision-based assessment of open suturing skills.
    Hoffmann H; Funke I; Peters P; Venkatesh DK; Egger J; Rivoir D; Röhrig R; Hölzle F; Bodenstedt S; Willemer MC; Speidel S; Puladi B
    Int J Comput Assist Radiol Surg; 2024 Jun; 19(6):1045-1052. PubMed ID: 38526613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions.
    Kassahun Y; Yu B; Tibebu AT; Stoyanov D; Giannarou S; Metzen JH; Vander Poorten E
    Int J Comput Assist Radiol Surg; 2016 Apr; 11(4):553-68. PubMed ID: 26450107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of Automated Identification of Phases in Videos of Cataract Surgery Using Machine Learning and Deep Learning Techniques.
    Yu F; Silva Croso G; Kim TS; Song Z; Parker F; Hager GD; Reiter A; Vedula SS; Ali H; Sikder S
    JAMA Netw Open; 2019 Apr; 2(4):e191860. PubMed ID: 30951163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic data-driven real-time segmentation and recognition of surgical workflow.
    Dergachyova O; Bouget D; Huaulmé A; Morandi X; Jannin P
    Int J Comput Assist Radiol Surg; 2016 Jun; 11(6):1081-9. PubMed ID: 26995598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial intelligence software available for medical devices: surgical phase recognition in laparoscopic cholecystectomy.
    Shinozuka K; Turuda S; Fujinaga A; Nakanuma H; Kawamura M; Matsunobu Y; Tanaka Y; Kamiyama T; Ebe K; Endo Y; Etoh T; Inomata M; Tokuyasu T
    Surg Endosc; 2022 Oct; 36(10):7444-7452. PubMed ID: 35266049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surgical phase and instrument recognition: how to identify appropriate dataset splits.
    Kostiuchik G; Sharan L; Mayer B; Wolf I; Preim B; Engelhardt S
    Int J Comput Assist Radiol Surg; 2024 Apr; 19(4):699-711. PubMed ID: 38285380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A methodology for the annotation of surgical videos for supervised machine learning applications.
    Fischer E; Jawed KJ; Cleary K; Balu A; Donoho A; Thompson Gestrich W; Donoho DA
    Int J Comput Assist Radiol Surg; 2023 Sep; 18(9):1673-1678. PubMed ID: 37245179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Code-free machine learning for object detection in surgical video: a benchmarking, feasibility, and cost study.
    Unadkat V; Pangal DJ; Kugener G; Roshannai A; Chan J; Zhu Y; Markarian N; Zada G; Donoho DA
    Neurosurg Focus; 2022 Apr; 52(4):E11. PubMed ID: 35364576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-modal self-supervised representation learning for gesture and skill recognition in robotic surgery.
    Wu JY; Tamhane A; Kazanzides P; Unberath M
    Int J Comput Assist Radiol Surg; 2021 May; 16(5):779-787. PubMed ID: 33759079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.