These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36889229)

  • 21. Production of Bacterial Cellulose by
    Costa AFS; Almeida FCG; Vinhas GM; Sarubbo LA
    Front Microbiol; 2017; 8():2027. PubMed ID: 29089941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Utilization of the sugar fraction from Arabica coffee pulp as a carbon source for bacteria producing cellulose and cytotoxicity with human keratinocyte.
    Sangta J; Ruksiriwanich W; Chittasupho C; Sringarm K; Rachtanapun P; Bakshani C; Willats W; Sommano S
    Prep Biochem Biotechnol; 2024 May; 54(5):587-596. PubMed ID: 37747818
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic modification for enhancing bacterial cellulose production and its applications.
    Singhania RR; Patel AK; Tsai ML; Chen CW; Di Dong C
    Bioengineered; 2021 Dec; 12(1):6793-6807. PubMed ID: 34519629
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Morphology and structure characterization of bacterial celluloses produced by different strains in agitated culture.
    Bi JC; Liu SX; Li CF; Li J; Liu LX; Deng J; Yang YC
    J Appl Microbiol; 2014 Nov; 117(5):1305-11. PubMed ID: 25098972
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellulose synthesis by Komagataeibacter rhaeticus strain P 1463 isolated from Kombucha.
    Semjonovs P; Ruklisha M; Paegle L; Saka M; Treimane R; Skute M; Rozenberga L; Vikele L; Sabovics M; Cleenwerck I
    Appl Microbiol Biotechnol; 2017 Feb; 101(3):1003-1012. PubMed ID: 27678116
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High yield production of cellulose by a
    Thorat MN; Dastager SG
    RSC Adv; 2018 Aug; 8(52):29797-29805. PubMed ID: 35547325
    [No Abstract]   [Full Text] [Related]  

  • 27. Effects of alternative energy sources on bacterial cellulose characteristics produced by Komagataeibacter medellinensis.
    Molina-Ramírez C; Enciso C; Torres-Taborda M; Zuluaga R; Gañán P; Rojas OJ; Castro C
    Int J Biol Macromol; 2018 Oct; 117():735-741. PubMed ID: 29847783
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isolation and identification of cellulose-producing strain Komagataeibacter intermedius from fermented fruit juice.
    Lin SP; Huang YH; Hsu KD; Lai YJ; Chen YK; Cheng KC
    Carbohydr Polym; 2016 Oct; 151():827-833. PubMed ID: 27474630
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production of arabitol from glycerol: strain screening and study of factors affecting production yield.
    Koganti S; Kuo TM; Kurtzman CP; Smith N; Ju LK
    Appl Microbiol Biotechnol; 2011 Apr; 90(1):257-67. PubMed ID: 21127857
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of arabitol from enzymatic hydrolysate of soybean flour by Debaryomyces hansenii fermentation.
    Loman AA; Islam SMM; Ju LK
    Appl Microbiol Biotechnol; 2018 Jan; 102(2):641-653. PubMed ID: 29150708
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacterial cellulose spheroids as building blocks for 3D and patterned living materials and for regeneration.
    Caro-Astorga J; Walker KT; Herrera N; Lee KY; Ellis T
    Nat Commun; 2021 Aug; 12(1):5027. PubMed ID: 34413311
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Statistical optimization and characterization of a biocellulose produced by local Egyptian isolate Komagataeibacter hansenii AS.5.
    Saleh AK; Soliman NA; Farrag AA; Ibrahim MM; El-Shinnawy NA; Abdel-Fattah YR
    Int J Biol Macromol; 2020 Feb; 144():198-207. PubMed ID: 31843613
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bacterial cellulose production by a strain of Komagataeibacter rhaeticus isolated from residual loquat.
    Ye J; Li J; Wang Q; Wang X; Wang S; Wang H; Xu J
    Appl Microbiol Biotechnol; 2023 Mar; 107(5-6):1551-1562. PubMed ID: 36723702
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reproducibility of Bacterial Cellulose Nanofibers Over Sub-Cultured Generations for the Development of Novel Textiles.
    Wood J; van der Gast C; Rivett D; Verran J; Redfern J
    Front Bioeng Biotechnol; 2022; 10():876822. PubMed ID: 35547175
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bacterial cellulose: recent progress in production and industrial applications.
    Avcioglu NH
    World J Microbiol Biotechnol; 2022 Apr; 38(5):86. PubMed ID: 35397756
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus.
    Fan X; Gao Y; He W; Hu H; Tian M; Wang K; Pan S
    Carbohydr Polym; 2016 Oct; 151():1068-1072. PubMed ID: 27474656
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fruit peels support higher yield and superior quality bacterial cellulose production.
    Kumbhar JV; Rajwade JM; Paknikar KM
    Appl Microbiol Biotechnol; 2015 Aug; 99(16):6677-91. PubMed ID: 25957154
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluating a polymicrobial biofilm model for structural components by co-culturing
    Mahadevaswamy UR; Mugunthan S; Seviour T; Kjelleberg S; Lim S
    Biofilm; 2024 Jun; 7():100176. PubMed ID: 38322579
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly Stretchable Bacterial Cellulose Produced by
    Cielecka I; Ryngajłło M; Maniukiewicz W; Bielecki S
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34961006
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Set-Up of Bacterial Cellulose Production From the Genus
    Vigentini I; Fabrizio V; Dellacà F; Rossi S; Azario I; Mondin C; Benaglia M; Foschino R
    Front Microbiol; 2019; 10():1953. PubMed ID: 31551945
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.