BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 36889237)

  • 1. Modelling braking behaviour of distracted young drivers in car-following interactions: A grouped random parameters duration model with heterogeneity-in-means.
    Ali Y; Haque MM
    Accid Anal Prev; 2023 Jun; 185():107015. PubMed ID: 36889237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A parametric duration model of the reaction times of drivers distracted by mobile phone conversations.
    Haque MM; Washington S
    Accid Anal Prev; 2014 Jan; 62():42-53. PubMed ID: 24129320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of road infrastructure and traffic complexity in speed adaptation behaviour of distracted drivers.
    Oviedo-Trespalacios O; Haque MM; King M; Washington S
    Accid Anal Prev; 2017 Apr; 101():67-77. PubMed ID: 28189943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of mobile phone use on car-following behaviour of young drivers.
    Saifuzzaman M; Haque MM; Zheng Z; Washington S
    Accid Anal Prev; 2015 Sep; 82():10-9. PubMed ID: 26009990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rear-end collision risk assessment model based on drivers' collision avoidance process under influences of cell phone use and gender-A driving simulator based study.
    Li X; Yan X; Wu J; Radwan E; Zhang Y
    Accid Anal Prev; 2016 Dec; 97():1-18. PubMed ID: 27565040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Comparative Study of Accident Risk Related to Speech-Based and Handheld Texting during a Sudden Braking Event in Urban Road Environments.
    Fu R; Chen Y; Xu Q; Guo Y; Yuan W
    Int J Environ Res Public Health; 2020 Aug; 17(16):. PubMed ID: 32781529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-regulation of driving speed among distracted drivers: An application of driver behavioral adaptation theory.
    Oviedo-Trespalacios O; Haque MM; King M; Washington S
    Traffic Inj Prev; 2017 Aug; 18(6):599-605. PubMed ID: 28095026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobile Phone Use in a Car-Following Situation: Impact on Time Headway and Effectiveness of Driver's Rear-End Risk Compensation Behavior via a Driving Simulator Study.
    Chen Y; Fu R; Xu Q; Yuan W
    Int J Environ Res Public Health; 2020 Feb; 17(4):. PubMed ID: 32092914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Driving behaviour while self-regulating mobile phone interactions: A human-machine system approach.
    Oviedo-Trespalacios O; Haque MM; King M; Demmel S
    Accid Anal Prev; 2018 Sep; 118():253-262. PubMed ID: 29653674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Driver distraction and in-vehicle interventions: A driving simulator study on visual attention and driving performance.
    Ezzati Amini R; Al Haddad C; Batabyal D; Gkena I; De Vos B; Cuenen A; Brijs T; Antoniou C
    Accid Anal Prev; 2023 Oct; 191():107195. PubMed ID: 37441985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drivers' gap acceptance behaviours at intersections: A driving simulator study to understand the impact of mobile phone visual-manual interactions.
    Li X; Oviedo-Trespalacios O; Rakotonirainy A
    Accid Anal Prev; 2020 Apr; 138():105486. PubMed ID: 32109686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of car driver responses to avoid car-to-cyclist perpendicular collisions based on drive recorder data and driving simulator experiments.
    Zhao Y; Miyahara T; Mizuno K; Ito D; Han Y
    Accid Anal Prev; 2021 Feb; 150():105862. PubMed ID: 33276185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Examination of drivers' cell phone use behavior at intersections by using naturalistic driving data.
    Xiong H; Bao S; Sayer J; Kato K
    J Safety Res; 2015 Sep; 54():89-93. PubMed ID: 26403907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Mate! I'm running 10 min late": An investigation into the self-regulation of mobile phone tasks while driving.
    Oviedo-Trespalacios O; Haque MM; King M; Washington S
    Accid Anal Prev; 2019 Jan; 122():134-142. PubMed ID: 30343165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unraveling the differences in distracted driving injury severities in passenger car, sport utility vehicle, pickup truck, and minivan crashes.
    Islam M
    Accid Anal Prev; 2024 Mar; 196():107444. PubMed ID: 38169183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decisions and actions of distracted drivers at the onset of yellow lights.
    Haque MM; Ohlhauser AD; Washington S; Boyle LN
    Accid Anal Prev; 2016 Nov; 96():290-299. PubMed ID: 25891775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distracting tasks have persisting effects on young and older drivers' braking performance.
    Bock O; Stojan R; Wechsler K; Mack M; Voelcker-Rehage C
    Accid Anal Prev; 2021 Oct; 161():106363. PubMed ID: 34454282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autonomous emergency braking systems adapted to snowy road conditions improve drivers' perceived safety and trust.
    Koglbauer I; Holzinger J; Eichberger A; Lex C
    Traffic Inj Prev; 2018 Apr; 19(3):332-337. PubMed ID: 29227692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using naturalistic driving study data to investigate the impact of driver distraction on driver's brake reaction time in freeway rear-end events in car-following situation.
    Gao J; Davis GA
    J Safety Res; 2017 Dec; 63():195-204. PubMed ID: 29203019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mobile phone use among car drivers and motorcycle riders: The effect of problematic mobile phone use, attitudes, beliefs and perceived risk.
    Nguyen-Phuoc DQ; Oviedo-Trespalacios O; Su DN; De Gruyter C; Nguyen T
    Accid Anal Prev; 2020 Aug; 143():105592. PubMed ID: 32485432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.