These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36889385)

  • 1. Current progress of continuous-flow aerobic granular sludge: A critical review.
    Samaei SH; Chen J; Xue J
    Sci Total Environ; 2023 Jun; 875():162633. PubMed ID: 36889385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a dynamic feeding strategy for continuous-flow aerobic granulation and nitrogen removal in a modified airlift loop reactor for municipal wastewater treatment.
    Li Y; Liu SJ; Chen FM; Zuo JE
    Sci Total Environ; 2020 Apr; 714():136764. PubMed ID: 31982758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PHA and EPS production from industrial wastewater by conventional activated sludge, membrane bioreactor and aerobic granular sludge technologies: A comprehensive comparison.
    Traina F; Capodici M; Torregrossa M; Viviani G; Corsino SF
    Chemosphere; 2024 May; 355():141768. PubMed ID: 38537712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feast/famine ratio determined continuous flow aerobic granulation.
    Sun Y; Angelotti B; Brooks M; Wang ZW
    Sci Total Environ; 2021 Jan; 750():141467. PubMed ID: 32853933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling of Fe-C and aerobic granular sludge to treat refractory wastewater from a membrane manufacturer in a pilot-scale system.
    Guo T; Ji Y; Zhao J; Horn H; Li J
    Water Res; 2020 Nov; 186():116331. PubMed ID: 32877808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Full-scale upgrade activated sludge to continuous-flow aerobic granular sludge: Implementing microaerobic-aerobic configuration with internal separators.
    Yu C; Wang K; Zhang K; Liu R; Zheng P
    Water Res; 2024 Jan; 248():120870. PubMed ID: 38007885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic response of aerobic granular sludge to feast and famine conditions in plug flow reactors fed with real domestic wastewater.
    Sun Y; Gomeiz AT; Van Aken B; Angelotti B; Brooks M; Wang ZW
    Sci Total Environ; 2021 Mar; 758():144155. PubMed ID: 33316597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerobic sludge granulation in a full-scale sequencing batch reactor.
    Li J; Ding LB; Cai A; Huang GX; Horn H
    Biomed Res Int; 2014; 2014():268789. PubMed ID: 24822190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous-flow aerobic granulation in plug-flow bioreactors fed with real domestic wastewater.
    Sun Y; Angelotti B; Wang ZW
    Sci Total Environ; 2019 Oct; 688():762-770. PubMed ID: 31255814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilizing anaerobic substrate distribution for growth of aerobic granular sludge in continuous-flow reactors.
    Haaksman VA; van Dijk EJH; Al-Zuhairy S; Mulders M; Loosdrecht MCMV; Pronk M
    Water Res; 2024 Jun; 257():121531. PubMed ID: 38701553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. State of the art of aerobic granulation in continuous flow bioreactors.
    Kent TR; Bott CB; Wang ZW
    Biotechnol Adv; 2018; 36(4):1139-1166. PubMed ID: 29597030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of aerobic granular sludge stability in a continuous-flow membrane bioreactor.
    Corsino SF; Campo R; Di Bella G; Torregrossa M; Viviani G
    Bioresour Technol; 2016 Jan; 200():1055-9. PubMed ID: 26526094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional analysis of extracellular polymeric substances (EPS) during the granulation of aerobic sludge: Relationship among EPS, granulation and nutrients removal.
    Liu X; Pei Q; Han H; Yin H; Chen M; Guo C; Li J; Qiu H
    Environ Res; 2022 May; 208():112692. PubMed ID: 34999029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving aerobic sludge granulation in sequential batch reactor by natural drying: Effluent sludge recovery and feeding back into reactor.
    Liu J; Li J; Xu D; Sellamuthu B
    Chemosphere; 2020 Mar; 242():125159. PubMed ID: 31677513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on rapid cultivation of aerobic granular sludge (AGS) with different feast-famine strategies in continuous flow reactor and achieving high-level denitrification via utilization of soluble microbial product (SMP).
    Li D; Yang J; Li Y; Zhang J
    Sci Total Environ; 2021 Sep; 786():147237. PubMed ID: 33964764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous flow aerobic granular sludge: recent developments and applications.
    Yu C; Wang K
    Water Sci Technol; 2024 Mar; 89(5):1155-1178. PubMed ID: 38483491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Positive effects of magnetic Fe
    Ouyang L; Qiu B
    Bioresour Technol; 2023 Jan; 368():128296. PubMed ID: 36370942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast formation of aerobic granules by combining strong hydraulic selection pressure with overstressed organic loading rate.
    Liu YQ; Tay JH
    Water Res; 2015 Sep; 80():256-66. PubMed ID: 26005786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of real domestic sewage in a pilot-scale aerobic granular sludge reactor: Assessing start-up and operational control.
    Campos F; Guimarães NR; Maia FC; Sandoval MZ; Bassin JP; Bueno RF; Piveli RP
    Water Environ Res; 2021 Jun; 93(6):896-905. PubMed ID: 33176037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of aerobic granular sludge during the treatment of petrochemical wastewater.
    Caluwé M; Dobbeleers T; D'aes J; Miele S; Akkermans V; Daens D; Geuens L; Kiekens F; Blust R; Dries J
    Bioresour Technol; 2017 Aug; 238():559-567. PubMed ID: 28477518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.