These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36889931)

  • 1. Design, molecular dynamics simulation, and investigation of the mechanical behavior of DNA origami nanotubes with auxetic and honeycomb structures.
    Mogheiseh M; Etemadi E; Hasanzadeh Ghasemi R
    J Biomol Struct Dyn; 2023; 41(24):14822-14831. PubMed ID: 36889931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Re-Entrant Honeycomb Auxetic Structure with Enhanced Directional Properties.
    Mustahsan F; Khan SZ; Zaidi AA; Alahmadi YH; Mahmoud ERI; Almohamadi H
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auxetic Two-Dimensional Nanostructures from DNA*.
    Li R; Chen H; Choi JH
    Angew Chem Int Ed Engl; 2021 Mar; 60(13):7165-7173. PubMed ID: 33403767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploiting nonlinearities through geometric engineering to enhance the auxetic behaviour in re-entrant honeycomb metamaterials.
    Srivastava C; Bhola L; Mahesh V; Guruprasad PJ; Petrinic N; Scarpa F; Harursampath D; Ponnusami SA
    Sci Rep; 2023 Nov; 13(1):20915. PubMed ID: 38016976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Innovative Auxetic Honeycomb Sandwich Tube: Fabrication and Mechanical Properties.
    Wu J; Zhou J; Kong X; Xu Y; Chen Y; Zhu J; Jin F; Wang P
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composites with Re-Entrant Lattice: Effect of Filler on Auxetic Behaviour.
    Tashkinov M; Tarasova A; Vindokurov I; Silberschmidt VV
    Polymers (Basel); 2023 Oct; 15(20):. PubMed ID: 37896322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical anisotropy of two-dimensional metamaterials: a computational study.
    Liu N; Becton M; Zhang L; Tang K; Wang X
    Nanoscale Adv; 2019 Aug; 1(8):2891-2900. PubMed ID: 36133597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auxetic B
    Wang B; Wu Q; Zhang Y; Ma L; Wang J
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):33231-33237. PubMed ID: 31436953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Idealized 3D Auxetic Mechanical Metamaterial: An Analytical, Numerical, and Experimental Study.
    Ghavidelnia N; Bodaghi M; Hedayati R
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33672483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deformation Behavior Investigation of Auxetic Structure Made of Poly(butylene adipate-co-terephthalate) Biopolymers Using Finite Element Method.
    Schneider Y; Guski V; Schmauder S; Kadkhodapour J; Hufert J; Grebhardt A; Bonten C
    Polymers (Basel); 2023 Apr; 15(7):. PubMed ID: 37050406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extremely Non-Auxetic Behavior of a Typical Auxetic Microstructure Due to Its Material Properties.
    Bilski M; Wojciechowski KW; Stręk T; Kędziora P; Grima-Cornish JN; Dudek MR
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hard-particle rotation enabled soft-hard integrated auxetic mechanical metamaterials.
    Yang W; Gao Z; Yue Z; Li X; Xu B
    Proc Math Phys Eng Sci; 2019 Aug; 475(2228):20190234. PubMed ID: 31534427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatigue performance of auxetic meta-biomaterials.
    Kolken HMA; Garcia AF; Du Plessis A; Rans C; Mirzaali MJ; Zadpoor AA
    Acta Biomater; 2021 May; 126():511-523. PubMed ID: 33711528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical Properties of Auxetic Cellular Material Consisting of Re-Entrant Hexagonal Honeycombs.
    Zhang X; Yang D
    Materials (Basel); 2016 Nov; 9(11):. PubMed ID: 28774021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Enhanced Three-Dimensional Auxetic Lattice Structure with Improved Property.
    Xue Y; Gao P; Zhou L; Han F
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32102288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical relationships for 2D Re-entrant auxetic metamaterials: An application to 3D printing flexible implants.
    Hedayati R; Yousefi A; Dezaki ML; Bodaghi M
    J Mech Behav Biomed Mater; 2023 Jul; 143():105938. PubMed ID: 37263172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic Compressive and Flexural Behaviour of Re-Entrant Auxetics: A Numerical Study.
    Gao D; Zhang J; Zhang C; You Y
    Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37569923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Velocity Impact Behavior of Sandwich Plates with FG-CNTRC Face Sheets and Negative Poisson's Ratio Auxetic Honeycombs Core.
    Yang C; Ma W; Zhang Z; Zhong J
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical Fibers with a Negative Poisson's Ratio for Tougher Composites.
    Sun Y; Pugno N
    Materials (Basel); 2013 Feb; 6(2):699-712. PubMed ID: 28809335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the Orthotropic Behavior in an Auxetic Structure Based on a Novel Design Parameter of a Square Cell with Re-Entrant Struts.
    Valle R; Pincheira G; Tuninetti V; Garrido C; Treviño C; Morales J
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.