These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36889931)

  • 21. Deformation of Gels with Spherical Auxetic Inclusions.
    Zidek J; Polacek P; Jancar J
    Gels; 2022 Oct; 8(11):. PubMed ID: 36354606
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Negative Poisson's ratio polyethylene matrix and 0.5Ba(Zr
    Karmakar S; Kiran R; Bowen C; Vaish R; Chauhan VS; Elqahtani ZM; Ahmed SB; Al-Buriahi MS; Kumar A; Sung TH
    Sci Rep; 2022 Dec; 12(1):22610. PubMed ID: 36585424
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deformation Behavior of 3D Printed Auxetic Structures of Thermoplastic Polymers: PLA, PBAT, and Blends.
    Hufert J; Grebhardt A; Schneider Y; Bonten C; Schmauder S
    Polymers (Basel); 2023 Jan; 15(2):. PubMed ID: 36679269
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of size and surface on the auxetic behaviour of monolayer graphene kirigami.
    Cai K; Luo J; Ling Y; Wan J; Qin QH
    Sci Rep; 2016 Oct; 6():35157. PubMed ID: 27731401
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Temperature-Sensitive Anisotropic Negative Poisson's Ratio of Carbon Honeycomb.
    Wang W; He C; Xie L; Peng Q
    Nanomaterials (Basel); 2019 Mar; 9(4):. PubMed ID: 30925696
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Geometric Analysis of Three-Dimensional Woven Fabric with in-Plane Auxetic Behavior.
    Zeeshan M; Hu H; Etemadi E
    Polymers (Basel); 2023 Mar; 15(5):. PubMed ID: 36904567
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 4D Printing of NiTi Auxetic Structure with Improved Ballistic Performance.
    Hassanin H; Abena A; Elsayed MA; Essa K
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32751939
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Folding to Curved Surfaces: A Generalized Design Method and Mechanics of Origami-based Cylindrical Structures.
    Wang F; Gong H; Chen X; Chen CQ
    Sci Rep; 2016 Sep; 6():33312. PubMed ID: 27624892
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multifunctional auxetic and honeycomb composites made of 3D woven carbon fibre preforms.
    El-Dessouky HM; McHugh C
    Sci Rep; 2022 Dec; 12(1):22593. PubMed ID: 36585420
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioinspired Integrated Auxetic Elastomers Constructed by a Dual Dynamic Interfacial Healing Strategy.
    Zheng Z; Li J; Wei K; Tang N; Li MH; Hu J
    Adv Mater; 2023 Oct; 35(42):e2304631. PubMed ID: 37436838
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The 3D-Printed Honeycomb Metamaterials Tubes with Tunable Negative Poisson's Ratio for High-Performance Static and Dynamic Mechanical Properties.
    Guo C; Zhao D; Liu Z; Ding Q; Gao H; Yan Q; Sun Y; Ren F
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33799600
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using Finite Element Approach for Crashworthiness Assessment of a Polymeric Auxetic Structure Subjected to the Axial Loading.
    Farokhi Nejad A; Alipour R; Shokri Rad M; Yazid Yahya M; Rahimian Koloor SS; Petrů M
    Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32526842
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design and synthesis of pleated DNA origami nanotubes with adjustable diameters.
    Berengut JF; Berengut JC; Doye JPK; Prešern D; Kawamoto A; Ruan J; Wainwright MJ; Lee LK
    Nucleic Acids Res; 2019 Dec; 47(22):11963-11975. PubMed ID: 31728524
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellular Auxetic Structures for Mechanical Metamaterials: A Review.
    Kelkar PU; Kim HS; Cho KH; Kwak JY; Kang CY; Song HC
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32492946
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties.
    Kamrava S; Mousanezhad D; Ebrahimi H; Ghosh R; Vaziri A
    Sci Rep; 2017 Apr; 7():46046. PubMed ID: 28387345
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A reprogrammable mechanical metamaterial with origami functional-group transformation and ring reconfiguration.
    Hu X; Tan T; Wang B; Yan Z
    Nat Commun; 2023 Oct; 14(1):6709. PubMed ID: 37872137
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanical performance of auxetic meta-biomaterials.
    Kolken HMA; Lietaert K; van der Sloten T; Pouran B; Meynen A; Van Loock G; Weinans H; Scheys L; Zadpoor AA
    J Mech Behav Biomed Mater; 2020 Apr; 104():103658. PubMed ID: 32174416
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Revolutionizing Prosthetic Design with Auxetic Metamaterials and Structures: A Review of Mechanical Properties and Limitations.
    Fardan MF; Lenggana BW; Ubaidillah U; Choi SB; Susilo DD; Khan SZ
    Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374750
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving the strength and toughness of macroscale double networks by exploiting Poisson's ratio mismatch.
    Okumura T; Takahashi R; Hagita K; King DR; Gong JP
    Sci Rep; 2021 Jun; 11(1):13280. PubMed ID: 34168253
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design, Manufacture, and Characterization of Auxetic Yarns with Multiple Core/Wrap Structure by Braiding Method.
    Liu S; Chen H; Li Y; Du Z
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.