These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36889937)

  • 1. Assessment of three-body dispersion models against coupled-cluster benchmarks for crystalline benzene, carbon dioxide, and triazine.
    Xie Y; Glick ZL; Sherrill CD
    J Chem Phys; 2023 Mar; 158(9):094110. PubMed ID: 36889937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmark coupled-cluster lattice energy of crystalline benzene and assessment of multi-level approximations in the many-body expansion.
    Borca CH; Glick ZL; Metcalf DP; Burns LA; Sherrill CD
    J Chem Phys; 2023 Jun; 158(23):. PubMed ID: 37318167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Communication: resolving the three-body contribution to the lattice energy of crystalline benzene: benchmark results from coupled-cluster theory.
    Kennedy MR; McDonald AR; DePrince AE; Marshall MS; Podeszwa R; Sherrill CD
    J Chem Phys; 2014 Mar; 140(12):121104. PubMed ID: 24697416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benchmark theoretical study of the π-π binding energy in the benzene dimer.
    Miliordos E; Aprà E; Xantheas SS
    J Phys Chem A; 2014 Sep; 118(35):7568-78. PubMed ID: 24761749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reliable prediction of three-body intermolecular interactions using dispersion-corrected second-order Møller-Plesset perturbation theory.
    Huang Y; Beran GJ
    J Chem Phys; 2015 Jul; 143(4):044113. PubMed ID: 26233113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CrystaLattE: Automated computation of lattice energies of organic crystals exploiting the many-body expansion to achieve dual-level parallelism.
    Borca CH; Bakr BW; Burns LA; Sherrill CD
    J Chem Phys; 2019 Oct; 151(14):144103. PubMed ID: 31615262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and testing of an algorithm for efficient MP2/CCSD(T) energy estimation of molecular clusters with the 2-body approach.
    Khire SS; Gadre SR
    J Comput Chem; 2023 Jan; 44(3):261-267. PubMed ID: 35514315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmarking two-body contributions to crystal lattice energies and a range-dependent assessment of approximate methods.
    Sargent CT; Metcalf DP; Glick ZL; Borca CH; Sherrill CD
    J Chem Phys; 2023 Feb; 158(5):054112. PubMed ID: 36754814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved supermolecular second order Møller-Plesset intermolecular interaction energies using time-dependent density functional response theory.
    Hesselmann A
    J Chem Phys; 2008 Apr; 128(14):144112. PubMed ID: 18412428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate Intermolecular Interaction Energies from a Combination of MP2 and TDDFT Response Theory.
    Pitoňák M; Heßelmann A
    J Chem Theory Comput; 2010 Jan; 6(1):168-78. PubMed ID: 26614329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How important is thermal expansion for predicting molecular crystal structures and thermochemistry at finite temperatures?
    Heit YN; Beran GJ
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2016 Aug; 72(Pt 4):514-29. PubMed ID: 27484373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytic energy gradients for the orbital-optimized third-order Møller-Plesset perturbation theory.
    Bozkaya U
    J Chem Phys; 2013 Sep; 139(10):104116. PubMed ID: 24050337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benchmark Calculations of Three-Body Intermolecular Interactions and the Performance of Low-Cost Electronic Structure Methods.
    Řezáč J; Huang Y; Hobza P; Beran GJ
    J Chem Theory Comput; 2015 Jul; 11(7):3065-79. PubMed ID: 26575743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of the coupled-cluster singles and doubles method via scaling same- and opposite-spin components of the double excitation correlation energy.
    Takatani T; Hohenstein EG; Sherrill CD
    J Chem Phys; 2008 Mar; 128(12):124111. PubMed ID: 18376912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate Molecular Crystal Lattice Energies from a Fragment QM/MM Approach with On-the-Fly Ab Initio Force Field Parametrization.
    Wen S; Beran GJ
    J Chem Theory Comput; 2011 Nov; 7(11):3733-42. PubMed ID: 26598268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermolecular potential energy surface for CS2 dimer.
    Farrokhpour H; Mombeini Z; Namazian M; Coote ML
    J Comput Chem; 2011 Apr; 32(5):797-809. PubMed ID: 20941736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stochastic Search of Molecular Cluster Interaction Energy Surfaces with Coupled Cluster Quality Prediction. The Phenylacetylene Dimer.
    Addicoat MA; Nishimura Y; Sato T; Tsuneda T; Irle S
    J Chem Theory Comput; 2013 Aug; 9(8):3848-54. PubMed ID: 26584130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Divergence of Many-Body Perturbation Theory for Noncovalent Interactions of Large Molecules.
    Nguyen BD; Chen GP; Agee MM; Burow AM; Tang MP; Furche F
    J Chem Theory Comput; 2020 Apr; 16(4):2258-2273. PubMed ID: 32105488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Explicit correlation and basis set superposition error: the structure and energy of carbon dioxide dimer.
    McMahon JD; Lane JR
    J Chem Phys; 2011 Oct; 135(15):154309. PubMed ID: 22029315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benchmark theoretical study on the dissociation energy of chlorine.
    Csontos J; Kállay M
    J Phys Chem A; 2011 Jul; 115(26):7765-72. PubMed ID: 21604724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.