These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36890278)

  • 1. Safety level assessment of shield tunneling in water rich sandy pebble strata with large particle size.
    Yao P; Yu Z; Lv Y; Shi B; He Y; Wang H; Liu D; Wei S
    Sci Rep; 2023 Mar; 13(1):3854. PubMed ID: 36890278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of the safety control framework for shield tunneling in close proximity to the operational subway tunnels: case studies in mainland China.
    Li X; Yuan D
    Springerplus; 2016; 5():527. PubMed ID: 27186491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical Research on Diffusion Radius of Cement-Based Materials Considering the Pore Characteristics of Porous Media.
    Xie B; Cheng H; Wang X; Yao Z; Rong C; Zhou R; Zhang L; Guo L; Yu H; Xiong W; Xiang X
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural monitoring of metro infrastructure during shield tunneling construction.
    Ran L; Ye XW; Ming G; Dong XB
    ScientificWorldJournal; 2014; 2014():784690. PubMed ID: 25032238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of factors influencing surface settlement during shield construction of a double-line tunnel in a mudstone area.
    Yuan C; Zhang M; Ji S; Li J; Jin L
    Sci Rep; 2022 Dec; 12(1):22606. PubMed ID: 36585463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AHP-FSE-Based Risk Assessment and Mitigation for Slurry Balancing Shield Tunnel Construction.
    Li K; Xiahou X; Huang H; Tang L; Huang J; Li Q; Feng P
    J Environ Public Health; 2022; 2022():1666950. PubMed ID: 35733980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lagged settlement in sandy cobble strata and earth pressure on shield tunnel.
    Huang JZ; Zhang Y; Ouyang XW; Xu GY
    Math Biosci Eng; 2019 Jul; 16(6):6209-6230. PubMed ID: 31698558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Realization of Super-Large-Diameter Slurry Shield Passing through Settlement-Sensitive Area Based on Unreinforced Disturbance Control Technology.
    Liu D; Liu X; Zhong Z; Han Y; Xiong F; Zhou X
    Comput Intell Neurosci; 2022; 2022():6299645. PubMed ID: 35069723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of a 10.22 m diameter EPB shield: a case study in Beijing subway construction.
    Li X; Yuan D; Guo Y; Cai Z
    Springerplus; 2016; 5(1):2004. PubMed ID: 27933260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Equivalent deformation modulus of sandy pebble soil-Mathematical derivation and numerical simulation.
    Huang JZ; Xu GY; Wang Y; Ouyang XW
    Math Biosci Eng; 2019 Mar; 16(4):2756-2774. PubMed ID: 31137236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the Large-Span Pile-Beam-Arch Construction Method on the Surface Deformation of a Metro Station in the Silty Clay-Pebble Composite Stratum.
    Li T; Li Y; Yang T; Hou R; Gao Y; Liu B; Qiao G
    Materials (Basel); 2023 Apr; 16(7):. PubMed ID: 37049228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical prediction of the optimal shield tunneling strategy for tunnel construction in karst regions.
    Liu Z; Ming W; Li J; Zhou C; Zhang L
    PLoS One; 2021; 16(6):e0252733. PubMed ID: 34086794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research on the deformation laws of buildings adjacent to shield tunnels in clay strata.
    Cai L; Shi K; Jiang F; Chen G; Xiao Z; Zheng C; Zhang S; Wu Y
    Sci Rep; 2024 Jan; 14(1):265. PubMed ID: 38167851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved Combination Weighted Prediction Model of Aquifer Water Abundance Based on a Cloud Model.
    Cheng W; Dong F; Tang R; Yin H; Shi L; Zhai Y; Li X
    ACS Omega; 2022 Oct; 7(40):35840-35850. PubMed ID: 36249369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intelligent decision method for stability assessment of shield tunnel based on multi-objective data mining.
    Li X; Xue Y; Li Z; Kong F; Zhou B
    Philos Trans A Math Phys Eng Sci; 2023 Sep; 381(2254):20220303. PubMed ID: 37454682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ground surface settlement analysis of shield tunneling under spatial variability of multiple geotechnical parameters.
    Hu B; Wang C
    Heliyon; 2019 Sep; 5(9):e02495. PubMed ID: 31687587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of FRP Bolts in Monitoring the Internal Force of the Rocks Surrounding a Mine-Shield Tunnel.
    Liu Z; Zhou C; Lu Y; Yang X; Liang Y; Zhang L
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30135394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multistage model for rapid identification of geological features in shield tunnelling.
    Hu M; Lu J; Zhou W; Xu W; Wu Z
    Sci Rep; 2023 Jan; 13(1):1799. PubMed ID: 36720996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction practice of water conveyance tunnel among complex geotechnical conditions: a case study.
    Duan K; Zhang G; Sun H
    Sci Rep; 2023 Sep; 13(1):15037. PubMed ID: 37699948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data on evolutionary hybrid neural network approach to predict shield tunneling-induced ground settlements.
    Zhang K; Lyu HM; Shen SL; Zhou A; Yin ZY
    Data Brief; 2020 Dec; 33():106432. PubMed ID: 33204775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.