These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 36890892)
1. Korangi Alleluya V; Argüelles Arias A; Ribeiro B; De Coninck B; Helmus C; Delaplace P; Ongena M Front Plant Sci; 2023; 14():1069971. PubMed ID: 36890892 [TBL] [Abstract][Full Text] [Related]
2. Seed-borne endophytic Bacillus velezensis LHSB1 mediate the biocontrol of peanut stem rot caused by Sclerotium rolfsii. Chen L; Wu YD; Chong XY; Xin QH; Wang DX; Bian K J Appl Microbiol; 2020 Mar; 128(3):803-813. PubMed ID: 31705716 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of efficacy and mechanism of Jia S; Song C; Dong H; Yang X; Li X; Ji M; Chu J Front Microbiol; 2023; 14():1111965. PubMed ID: 36876084 [TBL] [Abstract][Full Text] [Related]
4. Tang T; Wang F; Huang H; Guo J; Guo X; Duan Y; Wang X; Wang Q; You J Front Microbiol; 2024; 15():1337655. PubMed ID: 38500587 [TBL] [Abstract][Full Text] [Related]
5. Endophytic Fungi as Potential Biocontrol Agents against Safari Motlagh MR; Farokhzad M; Kaviani B; Kulus D Cells; 2022 Aug; 11(17):. PubMed ID: 36078051 [TBL] [Abstract][Full Text] [Related]
6. The antagonistic potential of peanut endophytic bacteria against Sclerotium rolfsii causing stem rot. Li L; Wang J; Liu D; Li L; Zhen J; Lei G; Wang B; Yang W Braz J Microbiol; 2023 Mar; 54(1):361-370. PubMed ID: 36574205 [TBL] [Abstract][Full Text] [Related]
7. Characterization of Vahidinasab M; Adiek I; Hosseini B; Akintayo SO; Abrishamchi B; Pfannstiel J; Henkel M; Lilge L; Voegele RT; Hausmann R Microorganisms; 2022 Nov; 10(11):. PubMed ID: 36363818 [No Abstract] [Full Text] [Related]
8. Characteristics of biological control and mechanisms of Pseudomonas chlororaphis zm-1 against peanut stem rot. Liu F; Yang S; Xu F; Zhang Z; Lu Y; Zhang J; Wang G BMC Microbiol; 2022 Jan; 22(1):9. PubMed ID: 34986788 [TBL] [Abstract][Full Text] [Related]
9. Induced systemic resistance and symbiotic performance of peanut plants challenged with fungal pathogens and co-inoculated with the biocontrol agent Bacillus sp. CHEP5 and Bradyrhizobium sp. SEMIA6144. Figueredo MS; Tonelli ML; Ibáñez F; Morla F; Cerioni G; Del Carmen Tordable M; Fabra A Microbiol Res; 2017 Apr; 197():65-73. PubMed ID: 28219527 [TBL] [Abstract][Full Text] [Related]
10. Comparison of Current Peanut Fungicides Against Wei X; Langston DB; Mehl HL Plant Dis; 2022 Aug; 106(8):2046-2052. PubMed ID: 35306840 [TBL] [Abstract][Full Text] [Related]
11. Genomic, Antimicrobial, and Aphicidal Traits of Liang L; Fu Y; Deng S; Wu Y; Gao M Microorganisms; 2021 Dec; 10(1):. PubMed ID: 35056513 [TBL] [Abstract][Full Text] [Related]
12. Lam VB; Meyer T; Arias AA; Ongena M; Oni FE; Höfte M Microorganisms; 2021 Jul; 9(7):. PubMed ID: 34361878 [TBL] [Abstract][Full Text] [Related]
13. Characterization ofantifungal properties of lipopeptide-producing Akintayo SO; Hosseini B; Vahidinasab M; Messmer M; Pfannstiel J; Bertsche U; Hubel P; Henkel M; Hausmann R; Voegele RT; Lilge L Front Bioeng Biotechnol; 2023; 11():1228386. PubMed ID: 37609113 [No Abstract] [Full Text] [Related]
14. Lipopeptide Interplay Mediates Molecular Interactions between Soil Bacilli and Pseudomonads. Andrić S; Meyer T; Rigolet A; Prigent-Combaret C; Höfte M; Balleux G; Steels S; Hoff G; De Mot R; McCann A; De Pauw E; Argüelles Arias A; Ongena M Microbiol Spectr; 2021 Dec; 9(3):e0203821. PubMed ID: 34878336 [TBL] [Abstract][Full Text] [Related]
15. The Plant-Beneficial Rhizobacterium Bacillus velezensis FZB42 Controls the Soybean Pathogen Phytophthora sojae Due to Bacilysin Production. Han X; Shen D; Xiong Q; Bao B; Zhang W; Dai T; Zhao Y; Borriss R; Fan B Appl Environ Microbiol; 2021 Nov; 87(23):e0160121. PubMed ID: 34550751 [TBL] [Abstract][Full Text] [Related]
16. Antimicrobial Bacillus velezensis HC6: production of three kinds of lipopeptides and biocontrol potential in maize. Liu Y; Teng K; Wang T; Dong E; Zhang M; Tao Y; Zhong J J Appl Microbiol; 2020 Jan; 128(1):242-254. PubMed ID: 31559664 [TBL] [Abstract][Full Text] [Related]
17. Antagonism of Two Plant-Growth Promoting Bacillus velezensis Isolates Against Ralstonia solanacearum and Fusarium oxysporum. Cao Y; Pi H; Chandrangsu P; Li Y; Wang Y; Zhou H; Xiong H; Helmann JD; Cai Y Sci Rep; 2018 Mar; 8(1):4360. PubMed ID: 29531357 [TBL] [Abstract][Full Text] [Related]
18. Athelia (Sclerotium) rolfsii in Allium sativum: potential biocontrol agents and their effects on plant metabolites. Cavalcanti VP; Araújo NAF; Schwanestrada KRF; Pasqual M; Dória J An Acad Bras Cienc; 2018; 90(4):3949-3962. PubMed ID: 30427392 [TBL] [Abstract][Full Text] [Related]
19. Evaluating the biocontrol potential of Canadian strain Bacillus velezensis 1B-23 via its surfactin production at various pHs and temperatures. Li MSM; Piccoli DA; McDowell T; MacDonald J; Renaud J; Yuan ZC BMC Biotechnol; 2021 Apr; 21(1):31. PubMed ID: 33926450 [TBL] [Abstract][Full Text] [Related]
20. Biocontrol of tomato bacterial wilt by the new strain Bacillus velezensis FJAT-46737 and its lipopeptides. Chen M; Wang J; Liu B; Zhu Y; Xiao R; Yang W; Ge C; Chen Z BMC Microbiol; 2020 Jun; 20(1):160. PubMed ID: 32539679 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]