BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 36890892)

  • 1.
    Korangi Alleluya V; Argüelles Arias A; Ribeiro B; De Coninck B; Helmus C; Delaplace P; Ongena M
    Front Plant Sci; 2023; 14():1069971. PubMed ID: 36890892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seed-borne endophytic Bacillus velezensis LHSB1 mediate the biocontrol of peanut stem rot caused by Sclerotium rolfsii.
    Chen L; Wu YD; Chong XY; Xin QH; Wang DX; Bian K
    J Appl Microbiol; 2020 Mar; 128(3):803-813. PubMed ID: 31705716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of efficacy and mechanism of
    Jia S; Song C; Dong H; Yang X; Li X; Ji M; Chu J
    Front Microbiol; 2023; 14():1111965. PubMed ID: 36876084
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Tang T; Wang F; Huang H; Guo J; Guo X; Duan Y; Wang X; Wang Q; You J
    Front Microbiol; 2024; 15():1337655. PubMed ID: 38500587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endophytic Fungi as Potential Biocontrol Agents against
    Safari Motlagh MR; Farokhzad M; Kaviani B; Kulus D
    Cells; 2022 Aug; 11(17):. PubMed ID: 36078051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The antagonistic potential of peanut endophytic bacteria against Sclerotium rolfsii causing stem rot.
    Li L; Wang J; Liu D; Li L; Zhen J; Lei G; Wang B; Yang W
    Braz J Microbiol; 2023 Mar; 54(1):361-370. PubMed ID: 36574205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of
    Vahidinasab M; Adiek I; Hosseini B; Akintayo SO; Abrishamchi B; Pfannstiel J; Henkel M; Lilge L; Voegele RT; Hausmann R
    Microorganisms; 2022 Nov; 10(11):. PubMed ID: 36363818
    [No Abstract]   [Full Text] [Related]  

  • 8. Characteristics of biological control and mechanisms of Pseudomonas chlororaphis zm-1 against peanut stem rot.
    Liu F; Yang S; Xu F; Zhang Z; Lu Y; Zhang J; Wang G
    BMC Microbiol; 2022 Jan; 22(1):9. PubMed ID: 34986788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induced systemic resistance and symbiotic performance of peanut plants challenged with fungal pathogens and co-inoculated with the biocontrol agent Bacillus sp. CHEP5 and Bradyrhizobium sp. SEMIA6144.
    Figueredo MS; Tonelli ML; Ibáñez F; Morla F; Cerioni G; Del Carmen Tordable M; Fabra A
    Microbiol Res; 2017 Apr; 197():65-73. PubMed ID: 28219527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Current Peanut Fungicides Against
    Wei X; Langston DB; Mehl HL
    Plant Dis; 2022 Aug; 106(8):2046-2052. PubMed ID: 35306840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic, Antimicrobial, and Aphicidal Traits of
    Liang L; Fu Y; Deng S; Wu Y; Gao M
    Microorganisms; 2021 Dec; 10(1):. PubMed ID: 35056513
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Lam VB; Meyer T; Arias AA; Ongena M; Oni FE; Höfte M
    Microorganisms; 2021 Jul; 9(7):. PubMed ID: 34361878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization ofantifungal properties of lipopeptide-producing
    Akintayo SO; Hosseini B; Vahidinasab M; Messmer M; Pfannstiel J; Bertsche U; Hubel P; Henkel M; Hausmann R; Voegele RT; Lilge L
    Front Bioeng Biotechnol; 2023; 11():1228386. PubMed ID: 37609113
    [No Abstract]   [Full Text] [Related]  

  • 14. Lipopeptide Interplay Mediates Molecular Interactions between Soil Bacilli and Pseudomonads.
    Andrić S; Meyer T; Rigolet A; Prigent-Combaret C; Höfte M; Balleux G; Steels S; Hoff G; De Mot R; McCann A; De Pauw E; Argüelles Arias A; Ongena M
    Microbiol Spectr; 2021 Dec; 9(3):e0203821. PubMed ID: 34878336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Plant-Beneficial Rhizobacterium Bacillus velezensis FZB42 Controls the Soybean Pathogen Phytophthora sojae Due to Bacilysin Production.
    Han X; Shen D; Xiong Q; Bao B; Zhang W; Dai T; Zhao Y; Borriss R; Fan B
    Appl Environ Microbiol; 2021 Nov; 87(23):e0160121. PubMed ID: 34550751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimicrobial Bacillus velezensis HC6: production of three kinds of lipopeptides and biocontrol potential in maize.
    Liu Y; Teng K; Wang T; Dong E; Zhang M; Tao Y; Zhong J
    J Appl Microbiol; 2020 Jan; 128(1):242-254. PubMed ID: 31559664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antagonism of Two Plant-Growth Promoting Bacillus velezensis Isolates Against Ralstonia solanacearum and Fusarium oxysporum.
    Cao Y; Pi H; Chandrangsu P; Li Y; Wang Y; Zhou H; Xiong H; Helmann JD; Cai Y
    Sci Rep; 2018 Mar; 8(1):4360. PubMed ID: 29531357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Athelia (Sclerotium) rolfsii in Allium sativum: potential biocontrol agents and their effects on plant metabolites.
    Cavalcanti VP; Araújo NAF; Schwanestrada KRF; Pasqual M; Dória J
    An Acad Bras Cienc; 2018; 90(4):3949-3962. PubMed ID: 30427392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the biocontrol potential of Canadian strain Bacillus velezensis 1B-23 via its surfactin production at various pHs and temperatures.
    Li MSM; Piccoli DA; McDowell T; MacDonald J; Renaud J; Yuan ZC
    BMC Biotechnol; 2021 Apr; 21(1):31. PubMed ID: 33926450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocontrol of tomato bacterial wilt by the new strain Bacillus velezensis FJAT-46737 and its lipopeptides.
    Chen M; Wang J; Liu B; Zhu Y; Xiao R; Yang W; Ge C; Chen Z
    BMC Microbiol; 2020 Jun; 20(1):160. PubMed ID: 32539679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.