These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Bipyridine- and phenanthroline-based metal-organic frameworks for highly efficient and tandem catalytic organic transformations via directed C-H activation. Manna K; Zhang T; Greene FX; Lin W J Am Chem Soc; 2015 Feb; 137(7):2665-73. PubMed ID: 25640998 [TBL] [Abstract][Full Text] [Related]
43. Hierarchical Porous MIL-101(Cr) Solid Acid-Catalyzed Production of Value-Added Acetals from Biomass-Derived Furfural. Liu S; Meng Y; Li H; Yang S Polymers (Basel); 2021 Oct; 13(20):. PubMed ID: 34685255 [TBL] [Abstract][Full Text] [Related]
44. A Noble-Metal-Free Metal-Organic Framework (MOF) Catalyst for the Highly Efficient Conversion of CO Hou SL; Dong J; Jiang XL; Jiao ZH; Zhao B Angew Chem Int Ed Engl; 2019 Jan; 58(2):577-581. PubMed ID: 30427112 [TBL] [Abstract][Full Text] [Related]
45. In Situ One-Step Synthesis of Platinum Nanoparticles Supported on Metal-Organic Frameworks as an Effective and Stable Catalyst for Selective Hydrogenation of 5-Hydroxymethylfurfural. Wang K; Zhao W; Zhang Q; Li H; Zhang F ACS Omega; 2020 Jul; 5(26):16183-16188. PubMed ID: 32656440 [TBL] [Abstract][Full Text] [Related]
46. Nanoporous {Y Chen H; Liu S; Lv H; Qin QP; Zhang X ACS Appl Mater Interfaces; 2022 Apr; 14(16):18589-18599. PubMed ID: 35417126 [TBL] [Abstract][Full Text] [Related]
47. One-step upgrading of bio-based furfural to γ-valerolactone Li M; Liu Y; Lin X; Tan J; Yang S; Li H RSC Adv; 2021 Oct; 11(56):35415-35424. PubMed ID: 35493184 [TBL] [Abstract][Full Text] [Related]
48. Metal-organic-framework derived Co-Pd bond is preferred over Fe-Pd for reductive upgrading of furfural to tetrahydrofurfuryl alcohol. Pendem S; Bolla SR; Morgan DJ; Shinde DB; Lai Z; Nakka L; Mondal J Dalton Trans; 2019 Jun; 48(24):8791-8802. PubMed ID: 31124551 [TBL] [Abstract][Full Text] [Related]
49. Selectively Regulating Lewis Acid-Base Sites in Metal-Organic Frameworks for Achieving Turn-On/Off of the Catalytic Activity in Different CO Tian XR; Jiang XL; Hou SL; Jiao ZH; Han J; Zhao B Angew Chem Int Ed Engl; 2022 Apr; 61(18):e202200123. PubMed ID: 35199447 [TBL] [Abstract][Full Text] [Related]
50. Preparation of Superhydrophobic Metal-Organic Framework/Polymer Composites as Stable and Efficient Catalysts. Zhang B; Bai X; Wang S; Li L; Li X; Fan F; Wang T; Zhang L; Zhang X; Li Y; Liu Y; Chen J; Meng F; Fu Y ACS Appl Mater Interfaces; 2021 Jul; 13(27):32175-32183. PubMed ID: 34184868 [TBL] [Abstract][Full Text] [Related]
51. In situ semi-transformation from heterometallic MOFs to Fe-Ni LDH/MOF hierarchical architectures for boosted oxygen evolution reaction. Huo J; Wang Y; Yan L; Xue Y; Li S; Hu M; Jiang Y; Zhai QG Nanoscale; 2020 Jul; 12(27):14514-14523. PubMed ID: 32614012 [TBL] [Abstract][Full Text] [Related]
52. Selective Catalytic Performances of Noble Metal Nanoparticle@MOF Composites: The Concomitant Effect of Aperture Size and Structural Flexibility of MOF Matrices. Chen L; Zhan W; Fang H; Cao Z; Yuan C; Xie Z; Kuang Q; Zheng L Chemistry; 2017 Aug; 23(47):11397-11403. PubMed ID: 28600870 [TBL] [Abstract][Full Text] [Related]
53. Development of Heterogeneous Enantioselective Catalysts using Chiral Metal-Organic Frameworks (MOFs). Han J; Kim S; Lee MS; Kim M; Jeong N J Vis Exp; 2020 Jan; (155):. PubMed ID: 32009645 [TBL] [Abstract][Full Text] [Related]
54. Highly Active La(III)-Based Metal-Organic Framework as a Heterogeneous Lewis Acid Catalyst for Friedel-Crafts Alkylation. Wu JQ; Wu XY; Lu JM; Shi Q; Shao LX Chemistry; 2022 Dec; 28(69):e202202441. PubMed ID: 36082763 [TBL] [Abstract][Full Text] [Related]
55. New Metal-Organic Frameworks for Chemical Fixation of CO Nguyen PTK; Nguyen HTD; Nguyen HN; Trickett CA; Ton QT; Gutiérrez-Puebla E; Monge MA; Cordova KE; Gándara F ACS Appl Mater Interfaces; 2018 Jan; 10(1):733-744. PubMed ID: 29251904 [TBL] [Abstract][Full Text] [Related]
56. Anodized Aluminum Oxide Templated Synthesis of Metal-Organic Frameworks Used as Membrane Reactors. Yu Y; Wu XJ; Zhao M; Ma Q; Chen J; Chen B; Sindoro M; Yang J; Han S; Lu Q; Zhang H Angew Chem Int Ed Engl; 2017 Jan; 56(2):578-581. PubMed ID: 27918142 [TBL] [Abstract][Full Text] [Related]
57. Identification of Cooperative Reaction Sites in Metal-Organic Framework Catalysts for High Yielding Lactic Acid Production from d-Xylose. Rungtaweevoranit B; Chaipojjana K; Junkaew A; Thongratkaew S; Impeng S; Faungnawakij K ChemSusChem; 2022 Mar; 15(5):e202102653. PubMed ID: 34982851 [TBL] [Abstract][Full Text] [Related]
58. Density Functional Investigation of the Conversion of Furfural to Furfuryl Alcohol by Reaction with Sittiwong J; Boonmark S; Nunthakitgoson W; Maihom T; Wattanakit C; Limtrakul J Inorg Chem; 2021 Apr; 60(7):4860-4868. PubMed ID: 33764784 [TBL] [Abstract][Full Text] [Related]
59. Locking Effect in Metal@MOF with Superior Stability for Highly Chemoselective Catalysis. Zhong Y; Liao P; Kang J; Liu Q; Wang S; Li S; Liu X; Li G J Am Chem Soc; 2023 Mar; 145(8):4659-4666. PubMed ID: 36791392 [TBL] [Abstract][Full Text] [Related]
60. Carbon-embedded Ni nanocatalysts derived from MOFs by a sacrificial template method for efficient hydrogenation of furfural to tetrahydrofurfuryl alcohol. Su Y; Chen C; Zhu X; Zhang Y; Gong W; Zhang H; Zhao H; Wang G Dalton Trans; 2017 May; 46(19):6358-6365. PubMed ID: 28463366 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]