BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 36891782)

  • 1. Fibrin gel enhanced trilayer structure in cell-cultured constructs.
    Snyder Y; Jana S
    Biotechnol Bioeng; 2023 Jun; 120(6):1678-1693. PubMed ID: 36891782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elastomeric Trilayer Substrates with Native-like Mechanical Properties for Heart Valve Leaflet Tissue Engineering.
    Snyder Y; Jana S
    ACS Biomater Sci Eng; 2023 Mar; 9(3):1570-1584. PubMed ID: 36802499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anisotropicity and flexibility in trilayered microfibrous substrates promote heart valve leaflet tissue engineering.
    Snyder Y; Jana S
    Biomed Mater; 2022 Oct; 17(6):. PubMed ID: 36150373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaflet Tissue Generation from Microfibrous Heart Valve Leaflet Scaffolds with Native Characteristics.
    Jana S; Morse D; Lerman A
    ACS Appl Bio Mater; 2021 Nov; 4(11):7836-7847. PubMed ID: 35006765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of polycaprolactone fibrous scaffold for heart valve tissue engineering.
    Jana S; Bhagia A; Lerman A
    Biomed Mater; 2019 Oct; 14(6):065014. PubMed ID: 31593551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrospun PGS:PCL microfibers align human valvular interstitial cells and provide tunable scaffold anisotropy.
    Masoumi N; Larson BL; Annabi N; Kharaziha M; Zamanian B; Shapero KS; Cubberley AT; Camci-Unal G; Manning KB; Mayer JE; Khademhosseini A
    Adv Healthc Mater; 2014 Jun; 3(6):929-39. PubMed ID: 24453182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tri-Layered and Gel-Like Nanofibrous Scaffolds with Anisotropic Features for Engineering Heart Valve Leaflets.
    Wu S; Li Y; Zhang C; Tao L; Kuss M; Lim JY; Butcher J; Duan B
    Adv Healthc Mater; 2022 May; 11(10):e2200053. PubMed ID: 35289986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tri-layered elastomeric scaffolds for engineering heart valve leaflets.
    Masoumi N; Annabi N; Assmann A; Larson BL; Hjortnaes J; Alemdar N; Kharaziha M; Manning KB; Mayer JE; Khademhosseini A
    Biomaterials; 2014 Sep; 35(27):7774-85. PubMed ID: 24947233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behavior of valvular interstitial cells on trilayered nanofibrous substrate mimicking morphologies of heart valve leaflet.
    Jana S; Lerman A
    Acta Biomater; 2019 Feb; 85():142-156. PubMed ID: 30528607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering.
    Wu S; Duan B; Qin X; Butcher JT
    Acta Biomater; 2017 Mar; 51():89-100. PubMed ID: 28110071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A knitted, fibrin-covered polycaprolactone scaffold for tissue engineering of the aortic valve.
    Van Lieshout M; Peters G; Rutten M; Baaijens F
    Tissue Eng; 2006 Mar; 12(3):481-7. PubMed ID: 16579681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trilayered tissue construct mimicking the orientations of three layers of a native heart valve leaflet.
    Jana S; Lerman A
    Cell Tissue Res; 2020 Nov; 382(2):321-335. PubMed ID: 32676860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Planar biaxial behavior of fibrin-based tissue-engineered heart valve leaflets.
    Robinson PS; Tranquillo RT
    Tissue Eng Part A; 2009 Oct; 15(10):2763-72. PubMed ID: 19368523
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Jana S; Lerman A
    Regen Med; 2020 Jan; 15(1):1177-1192. PubMed ID: 32100626
    [No Abstract]   [Full Text] [Related]  

  • 15. Biodegradable Poly-ε-Caprolactone Scaffolds with ECFCs and iMSCs for Tissue-Engineered Heart Valves.
    Lutter G; Puehler T; Cyganek L; Seiler J; Rogler A; Herberth T; Knueppel P; Gorb SN; Sathananthan J; Sellers S; Müller OJ; Frank D; Haben I
    Int J Mol Sci; 2022 Jan; 23(1):. PubMed ID: 35008953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trilayer scaffold with cardiosphere-derived cells for heart valve tissue engineering.
    Chen Q; Bruyneel A; Carr C; Czernuszka J
    J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):729-737. PubMed ID: 31184806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue-Engineered Fibrin-Based Heart Valve with Bio-Inspired Textile Reinforcement.
    Moreira R; Neusser C; Kruse M; Mulderrig S; Wolf F; Spillner J; Schmitz-Rode T; Jockenhoevel S; Mela P
    Adv Healthc Mater; 2016 Aug; 5(16):2113-21. PubMed ID: 27377438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fibrous heart valve leaflet substrate with native-mimicked morphology.
    Jana S; Franchi F; Lerman A
    Appl Mater Today; 2021 Sep; 24():. PubMed ID: 34485682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic poly(ethylene glycol)/polycaprolactone hydrogel-fiber composites for heart valve tissue engineering.
    Tseng H; Puperi DS; Kim EJ; Ayoub S; Shah JV; Cuchiara ML; West JL; Grande-Allen KJ
    Tissue Eng Part A; 2014 Oct; 20(19-20):2634-45. PubMed ID: 24712446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superior Tissue Evolution in Slow-Degrading Scaffolds for Valvular Tissue Engineering.
    Brugmans MM; Soekhradj-Soechit RS; van Geemen D; Cox M; Bouten CV; Baaijens FP; Driessen-Mol A
    Tissue Eng Part A; 2016 Jan; 22(1-2):123-32. PubMed ID: 26466917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.