These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 36892059)

  • 101. Gold nanoparticles delivery in mammalian live cells: a critical review.
    Lévy R; Shaheen U; Cesbron Y; Sée V
    Nano Rev; 2010; 1():. PubMed ID: 22110850
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Thermometries for Single Nanoparticles Heated with Light.
    Martinez LP; Mina Villarreal MC; Zaza C; Barella M; Acuna GP; Stefani FD; Violi IL; Gargiulo J
    ACS Sens; 2024 Mar; 9(3):1049-1064. PubMed ID: 38482790
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Current trends and future perspectives for enhanced drug delivery to central nervous system in treatment of stroke.
    Rajendran R; Kunnil A; Radhakrishnan A; Thomas S; Nair SC
    Ther Deliv; 2023 Jan; 14(1):61-85. PubMed ID: 37006156
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Monitoring optoporated process on mammalian cells by real-time measurement of membrane resealing time.
    Du X; Fu L; Wang Z; Zhang Z; Jiang S; Wang J; Yao C
    J Biomed Opt; 2023 Jun; 28(6):065006. PubMed ID: 37396684
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Rapidly Adaptive All-covalent Nanoparticle Surface Engineering.
    Diez-Castellnou M; Suo R; Marro N; Matthew SAL; Kay ER
    Chemistry; 2021 Jul; 27(38):9948-9953. PubMed ID: 33871124
    [TBL] [Abstract][Full Text] [Related]  

  • 106. High-throughput cell optoporation system based on Au nanoparticle layers mediated by resonant irradiation for precise and controllable gene delivery.
    Pylaev TE; Avdeeva ES; Khlebtsov BN; Lomova MV; Khlebtsov NG
    Sci Rep; 2024 Feb; 14(1):3044. PubMed ID: 38321124
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Microfluidic Synthesis and Biological Evaluation of Photothermal Biodegradable Copper Sulfide Nanoparticles.
    Ortiz de Solorzano I; Prieto M; Mendoza G; Alejo T; Irusta S; Sebastian V; Arruebo M
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21545-54. PubMed ID: 27486785
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Systemic Review of Biodegradable Nanomaterials in Nanomedicine.
    Su S; Kang PM
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32244653
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Nanomaterial-Based Strategies for Attenuating T-Cell-Mediated Immunodepression in Stroke Patients: Advancing Research Perspectives.
    Wang Y; Liu C; Ren Y; Song J; Fan K; Gao L; Ji X; Chen X; Zhao H
    Int J Nanomedicine; 2024; 19():5793-5812. PubMed ID: 38882535
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Prospects of nanoparticle-based radioenhancement for radiotherapy.
    Gerken LRH; Gerdes ME; Pruschy M; Herrmann IK
    Mater Horiz; 2023 Oct; 10(10):4059-4082. PubMed ID: 37555747
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Predicting the toxicity of nanoparticles using artificial intelligence tools: a systematic review.
    Banaye Yazdipour A; Masoorian H; Ahmadi M; Mohammadzadeh N; Ayyoubzadeh SM
    Nanotoxicology; 2023 Feb; 17(1):62-77. PubMed ID: 36883698
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Nanomaterials for photothermal cancer therapy.
    Duan S; Hu Y; Zhao Y; Tang K; Zhang Z; Liu Z; Wang Y; Guo H; Miao Y; Du H; Yang D; Li S; Zhang J
    RSC Adv; 2023 May; 13(21):14443-14460. PubMed ID: 37180014
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Electrochemical fabrication of TiO
    Mohan L; Kar S; Nagai M; Santra TS
    Mater Chem Phys; 2021 Jul; 267():. PubMed ID: 34285425
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Manipulating nanoparticles based on a laser photothermal trap.
    Shi H; Huang X; Jiang K; Zhao H; Ma J; Shi X
    Appl Opt; 2023 Apr; 62(11):2800-2808. PubMed ID: 37133121
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays.
    Sarathkumar E; Anjana RS; Jayasree RS
    Beilstein J Nanotechnol; 2023; 14():988-1003. PubMed ID: 37822722
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Photothermal nanoblade for large cargo delivery into mammalian cells.
    Wu TH; Teslaa T; Kalim S; French CT; Moghadam S; Wall R; Miller JF; Witte ON; Teitell MA; Chiou PY
    Anal Chem; 2011 Feb; 83(4):1321-7. PubMed ID: 21247066
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Ultrafast Real-Time PCR in Photothermal Microparticles.
    Kim BK; Lee SA; Park M; Jeon EJ; Kim MJ; Kim JM; Kim H; Jung S; Kim SK
    ACS Nano; 2022 Dec; 16(12):20533-20544. PubMed ID: 36475304
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Visualizing ultrafast photothermal dynamics with decoupled optical force nanoscopy.
    Wang H; Meyer SM; Murphy CJ; Chen YS; Zhao Y
    Nat Commun; 2023 Nov; 14(1):7267. PubMed ID: 37949867
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Quantitative phase study of the dynamic cellular response in femtosecond laser photoporation.
    Antkowiak M; Torres-Mapa ML; Dholakia K; Gunn-Moore FJ
    Biomed Opt Express; 2010 Aug; 1(2):414-424. PubMed ID: 21258476
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Immunological properties of gold nanoparticles.
    Dykman LA; Khlebtsov NG
    Chem Sci; 2017 Mar; 8(3):1719-1735. PubMed ID: 28451297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.