These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36892166)

  • 1. NeuroPred-PLM: an interpretable and robust model for neuropeptide prediction by protein language model.
    Wang L; Huang C; Wang M; Xue Z; Wang Y
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36892166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NeuroPred-FRL: an interpretable prediction model for identifying neuropeptide using feature representation learning.
    Hasan MM; Alam MA; Shoombuatong W; Deng HW; Manavalan B; Kurata H
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33975333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NeuroPep 2.0: An Updated Database Dedicated to Neuropeptide and Its Receptor Annotations.
    Wang M; Wang L; Xu W; Chu Z; Wang H; Lu J; Xue Z; Wang Y
    J Mol Biol; 2024 Feb; 436(4):168416. PubMed ID: 38143020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NeuroPred-CLQ: incorporating deep temporal convolutional networks and multi-head attention mechanism to predict neuropeptides.
    Chen S; Li Q; Zhao J; Bin Y; Zheng C
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35988921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepNeuropePred: A robust and universal tool to predict cleavage sites from neuropeptide precursors by protein language model.
    Wang L; Zeng Z; Xue Z; Wang Y
    Comput Struct Biotechnol J; 2024 Dec; 23():309-315. PubMed ID: 38179071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NeuroPpred-Fuse: an interpretable stacking model for prediction of neuropeptides by fusing sequence information and feature selection methods.
    Jiang M; Zhao B; Luo S; Wang Q; Chu Y; Chen T; Mao X; Liu Y; Wang Y; Jiang X; Wei DQ; Xiong Y
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34396388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NCSP-PLM: An ensemble learning framework for predicting non-classical secreted proteins based on protein language models and deep learning.
    Liu T; Song C; Wang C
    Math Biosci Eng; 2024 Jan; 21(1):1472-1488. PubMed ID: 38303473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NeuroPred: a tool to predict cleavage sites in neuropeptide precursors and provide the masses of the resulting peptides.
    Southey BR; Amare A; Zimmerman TA; Rodriguez-Zas SL; Sweedler JV
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W267-72. PubMed ID: 16845008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. iNP_ESM: Neuropeptide Identification Based on Evolutionary Scale Modeling and Unified Representation Embedding Features.
    Li H; Jiang L; Yang K; Shang S; Li M; Lv Z
    Int J Mol Sci; 2024 Jun; 25(13):. PubMed ID: 39000158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FusOn-pLM: A Fusion Oncoprotein-Specific Language Model via Focused Probabilistic Masking.
    Vincoff S; Goel S; Kholina K; Pulugurta R; Vure P; Chatterjee P
    bioRxiv; 2024 Jun; ():. PubMed ID: 38895377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the prohormone complement in cattle using genomic libraries and cleavage prediction approaches.
    Southey BR; Rodriguez-Zas SL; Sweedler JV
    BMC Genomics; 2009 May; 10():228. PubMed ID: 19445702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NeuroPep: a comprehensive resource of neuropeptides.
    Wang Y; Wang M; Yin S; Jang R; Wang J; Xue Z; Xu T
    Database (Oxford); 2015; 2015():bav038. PubMed ID: 25931458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NeuroCS: A Tool to Predict Cleavage Sites of Neuropeptide Precursors.
    Wang Y; Kang J; Li N; Zhou Y; Tang Z; He B; Huang J
    Protein Pept Lett; 2020; 27(4):337-345. PubMed ID: 31721688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel framework based on explainable AI and genetic algorithms for designing neurological medicines.
    Singh V; Singh SK; Sharma R
    Sci Rep; 2024 Jun; 14(1):12807. PubMed ID: 38834718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.
    Han Y; Kim D
    BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the topology prediction of α-helical transmembrane proteins with deep transfer learning.
    Wang L; Zhong H; Xue Z; Wang Y
    Comput Struct Biotechnol J; 2022; 20():1993-2000. PubMed ID: 35521551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of neuropeptide cleavage sites in human, mouse, rat, and cattle.
    Tegge AN; Southey BR; Sweedler JV; Rodriguez-Zas SL
    Mamm Genome; 2008 Feb; 19(2):106-20. PubMed ID: 18213482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GeoDILI: A Robust and Interpretable Model for Drug-Induced Liver Injury Prediction Using Graph Neural Network-Based Molecular Geometric Representation.
    Wu W; Qian J; Liang C; Yang J; Ge G; Zhou Q; Guan X
    Chem Res Toxicol; 2023 Nov; 36(11):1717-1730. PubMed ID: 37839069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-Aware Multimodal Deep Learning for Drug-Protein Interaction Prediction.
    Wang P; Zheng S; Jiang Y; Li C; Liu J; Wen C; Patronov A; Qian D; Chen H; Yang Y
    J Chem Inf Model; 2022 Mar; 62(5):1308-1317. PubMed ID: 35200015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting protein-peptide binding residues via interpretable deep learning.
    Wang R; Jin J; Zou Q; Nakai K; Wei L
    Bioinformatics; 2022 Jun; 38(13):3351-3360. PubMed ID: 35604077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.