These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36892197)

  • 1. The functional importance of bacterial oxidative phosphonate pathways.
    Pallitsch K; Zechel DL
    Biochem Soc Trans; 2023 Apr; 51(2):487-499. PubMed ID: 36892197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphonate biosynthesis and catabolism: a treasure trove of unusual enzymology.
    Peck SC; van der Donk WA
    Curr Opin Chem Biol; 2013 Aug; 17(4):580-8. PubMed ID: 23870698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Abc of Phosphonate Breakdown: A Mechanism for Bacterial Survival.
    Manav MC; Sofos N; Hove-Jensen B; Brodersen DE
    Bioessays; 2018 Nov; 40(11):e1800091. PubMed ID: 30198068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organophosphonates revealed: new insights into the microbial metabolism of ancient molecules.
    McGrath JW; Chin JP; Quinn JP
    Nat Rev Microbiol; 2013 Jun; 11(6):412-9. PubMed ID: 23624813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Microbial Degradation of Natural and Anthropogenic Phosphonates.
    Ruffolo F; Dinhof T; Murray L; Zangelmi E; Chin JP; Pallitsch K; Peracchi A
    Molecules; 2023 Sep; 28(19):. PubMed ID: 37836707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphonate Biochemistry.
    Horsman GP; Zechel DL
    Chem Rev; 2017 Apr; 117(8):5704-5783. PubMed ID: 27787975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A New Microbial Pathway for Organophosphonate Degradation Catalyzed by Two Previously Misannotated Non-Heme-Iron Oxygenases.
    Rajakovich LJ; Pandelia ME; Mitchell AJ; Chang WC; Zhang B; Boal AK; Krebs C; Bollinger JM
    Biochemistry; 2019 Mar; 58(12):1627-1647. PubMed ID: 30789718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of 2-hydroxyethylphosphonate, an unexpected intermediate common to multiple phosphonate biosynthetic pathways.
    Shao Z; Blodgett JA; Circello BT; Eliot AC; Woodyer R; Li G; van der Donk WA; Metcalf WW; Zhao H
    J Biol Chem; 2008 Aug; 283(34):23161-8. PubMed ID: 18544530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The enzymatic conversion of phosphonates to phosphate by bacteria.
    Kamat SS; Raushel FM
    Curr Opin Chem Biol; 2013 Aug; 17(4):589-96. PubMed ID: 23830682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphonates and their degradation by microorganisms.
    Kononova SV; Nesmeyanova MA
    Biochemistry (Mosc); 2002 Feb; 67(2):184-95. PubMed ID: 11952414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial metabolism of reduced phosphorus compounds.
    White AK; Metcalf WW
    Annu Rev Microbiol; 2007; 61():379-400. PubMed ID: 18035609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Valinophos Reveals a New Route in Microbial Phosphonate Biosynthesis That Is Broadly Conserved in Nature.
    Zhang Y; Chen L; Wilson JA; Cui J; Roodhouse H; Kayrouz C; Pham TM; Ju KS
    J Am Chem Soc; 2022 Jun; 144(22):9938-9948. PubMed ID: 35617676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Pathway for Biosynthesis of the Herbicidal Phosphonate Natural Product Phosphonothrixin Is Widespread in Actinobacteria.
    Bown L; Hirota R; Goettge MN; Cui J; Krist DT; Zhu L; Giurgiu C; van der Donk WA; Ju KS; Metcalf WW
    J Bacteriol; 2023 May; 205(5):e0048522. PubMed ID: 37074199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial transformations in phosphonate biosynthesis and catabolism, and their importance in nutrient cycling.
    Chin JP; McGrath JW; Quinn JP
    Curr Opin Chem Biol; 2016 Apr; 31():50-7. PubMed ID: 26836350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of PhnZ in complex with substrate reveals a di-iron oxygenase mechanism for catabolism of organophosphonates.
    van Staalduinen LM; McSorley FR; Schiessl K; Séguin J; Wyatt PB; Hammerschmidt F; Zechel DL; Jia Z
    Proc Natl Acad Sci U S A; 2014 Apr; 111(14):5171-6. PubMed ID: 24706911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular genetics of carbon-phosphorus bond cleavage in bacteria.
    Wanner BL
    Biodegradation; 1994 Dec; 5(3-4):175-84. PubMed ID: 7765831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New ways to break an old bond: the bacterial carbon-phosphorus hydrolases and their role in biogeochemical phosphorus cycling.
    Quinn JP; Kulakova AN; Cooley NA; McGrath JW
    Environ Microbiol; 2007 Oct; 9(10):2392-400. PubMed ID: 17803765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly selective but multifunctional oxygenases in secondary metabolism.
    Cochrane RV; Vederas JC
    Acc Chem Res; 2014 Oct; 47(10):3148-61. PubMed ID: 25250512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomics-enabled discovery of phosphonate natural products and their biosynthetic pathways.
    Ju KS; Doroghazi JR; Metcalf WW
    J Ind Microbiol Biotechnol; 2014 Feb; 41(2):345-56. PubMed ID: 24271089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphonate utilization by bacterial cultures and enrichments from environmental samples.
    Schowanek D; Verstraete W
    Appl Environ Microbiol; 1990 Apr; 56(4):895-903. PubMed ID: 2339877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.