These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36892200)

  • 1. Influence of junction resistance on spatiotemporal dynamics and reservoir computing performance arising from an SWNT/POM 3D network formed
    Azhari S; Banerjee D; Kotooka T; Usami Y; Tanaka H
    Nanoscale; 2023 May; 15(18):8169-8180. PubMed ID: 36892200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-Materio Reservoir Computing in a Sulfonated Polyaniline Network.
    Usami Y; van de Ven B; Mathew DG; Chen T; Kotooka T; Kawashima Y; Tanaka Y; Otsuka Y; Ohoyama H; Tamukoh H; Tanaka H; van der Wiel WG; Matsumoto T
    Adv Mater; 2021 Dec; 33(48):e2102688. PubMed ID: 34533867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A systematic exploration of reservoir computing for forecasting complex spatiotemporal dynamics.
    Platt JA; Penny SG; Smith TA; Chen TC; Abarbanel HDI
    Neural Netw; 2022 Sep; 153():530-552. PubMed ID: 35839598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A molecular neuromorphic network device consisting of single-walled carbon nanotubes complexed with polyoxometalate.
    Tanaka H; Akai-Kasaya M; TermehYousefi A; Hong L; Fu L; Tamukoh H; Tanaka D; Asai T; Ogawa T
    Nat Commun; 2018 Jul; 9(1):2693. PubMed ID: 30002369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reservoir Computing Beyond Memory-Nonlinearity Trade-off.
    Inubushi M; Yoshimura K
    Sci Rep; 2017 Aug; 7(1):10199. PubMed ID: 28860513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reservoir computing decoupling memory-nonlinearity trade-off.
    Xia J; Chu J; Leng S; Ma H
    Chaos; 2023 Nov; 33(11):. PubMed ID: 37967262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-inspired electronic fingerprint PUF device with single-walled carbon nanotube network surface mediated by M13 bacteriophage template.
    Jeong JS; Lee GS; Park TE; Lee KY; Ju H
    Sci Rep; 2022 Nov; 12(1):20096. PubMed ID: 36418461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the Recognition Task Performance of MEMS Resonator-Based Reservoir Computing System via Nonlinearity Tuning.
    Sun J; Yang W; Zheng T; Xiong X; Guo X; Zou X
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging dynamic memristors for neuromorphic reservoir computing.
    Cao J; Zhang X; Cheng H; Qiu J; Liu X; Wang M; Liu Q
    Nanoscale; 2022 Jan; 14(2):289-298. PubMed ID: 34932057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reservoir computing with 3D nanowire networks.
    Daniels RK; Mallinson JB; Heywood ZE; Bones PJ; Arnold MD; Brown SA
    Neural Netw; 2022 Oct; 154():122-130. PubMed ID: 35882080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multilayer Reservoir Computing Based on Ferroelectric α-In
    Liu K; Dang B; Zhang T; Yang Z; Bao L; Xu L; Cheng C; Huang R; Yang Y
    Adv Mater; 2022 Dec; 34(48):e2108826. PubMed ID: 35064981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revisiting the memory capacity in reservoir computing of directed acyclic network.
    Han X; Zhao Y; Small M
    Chaos; 2021 Mar; 31(3):033106. PubMed ID: 33810761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of optical coherence on the performance of large-scale spatiotemporal photonic reservoir computing systems.
    Nguimdo RM; Antonik P; Marsal N; Rontani D
    Opt Express; 2020 Sep; 28(19):27989-28005. PubMed ID: 32988080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A small-world topology enhances the echo state property and signal propagation in reservoir computing.
    Kawai Y; Park J; Asada M
    Neural Netw; 2019 Apr; 112():15-23. PubMed ID: 30735913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low dimensional manifolds in reservoir computers.
    Carroll TL
    Chaos; 2021 Apr; 31(4):043113. PubMed ID: 34251231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Backpropagation algorithms and Reservoir Computing in Recurrent Neural Networks for the forecasting of complex spatiotemporal dynamics.
    Vlachas PR; Pathak J; Hunt BR; Sapsis TP; Girvan M; Ott E; Koumoutsakos P
    Neural Netw; 2020 Jun; 126():191-217. PubMed ID: 32248008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermally-robust spatiotemporal parallel reservoir computing by frequency filtering in frustrated magnets.
    Kobayashi K; Motome Y
    Sci Rep; 2023 Oct; 13(1):15123. PubMed ID: 37816789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in physical reservoir computing: A review.
    Tanaka G; Yamane T; Héroux JB; Nakane R; Kanazawa N; Takeda S; Numata H; Nakano D; Hirose A
    Neural Netw; 2019 Jul; 115():100-123. PubMed ID: 30981085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chaotic time series prediction using phase space reconstruction based conceptor network.
    Zhang A; Xu Z
    Cogn Neurodyn; 2020 Dec; 14(6):849-857. PubMed ID: 33101536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Input-Output-Improved Reservoir Computing Based on Duffing Resonator Processing Dynamic Temperature Compensation for MEMS Resonant Accelerometer.
    Guo X; Yang W; Zheng T; Sun J; Xiong X; Wang Z; Zou X
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.